Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Table S1 Electrical resistance between Pt 1 and Pt 2 before and after poling under various

illumination intensities.

Illumination intensity	Resistance before poling	Resistance after poling
0 mW/cm ² (dark)	3.1 <i>M</i> Ω	2.7 MΩ
200 mW/cm ²	2.7 <i>M</i> Ω	2.2 <i>M</i> Ω
400 mW/cm ²	2.5 MΩ	2.0 <i>M</i> Ω
600 mW/cm ²	2.3 <i>M</i> Ω	1.8 <i>M</i> Ω
800 mW/cm ²	2.1 <i>M</i> Ω	1.6 <i>M</i> Ω

Figure S1 Curves of the dielectric permittivity and dielectric loss (\tan^{δ}) as functions of temperature.

Figure S2 Curves of the photocurrent vs. bias voltage acquired at various points in the grain interior and GBs of grain B at dark and 800-mW/cm^2 illumination before and after *E*-field poling.

Figure S3 Curves of the photocurrent vs. bias voltage acquired at various points in the grain interior and GBs of grain C at dark and 800-mW/cm^2 illumination before and after *E*-field poling.

Figure S4 Mapping of photocurrent-voltage characteristics before poling at (a) dark and (b) 800-mW/cm² illumination and after poling (c) 800-mW/cm² illumination.

Figure S5 TEM bright-field image of poled ($Bi_{0.93}Gd_{0.07}$)FeO₃ ceramic and the corresponding EDS spectra acquired from various points on the grain matrix.