Size- dependent electromagnetic wave absorption of 3C-SiC

particles

Hairui Zhao^a, Jingxiang Liu^a, Wentao Liu^b, Zongyi Shao^b, Zhijiang Wang^{a,c,*}

Materials

The synthesis process of SiC_{06} is provided in our previously published work (J. Phys. Chem. C, 2018, 122, 18537–18544; Carbon, 2023, 213, 118253; Carbon, 2024, 218,

118727). The powder synthesis employs a modified carbothermal reduction reaction. First, carbon nanoparticles, silicon powder, and silicon dioxide powder are mixed in a 4:1:1 molar ratio and he ated to 1500°C under an argon atmosphere, holding for 2 hours. After cooling to room temperatur e, the obtained powder is treated at 700°C in an air environment for 2 hours to remove any unreact ed carbon nanoparticles, ultimately yielding the nanoparticle powder. The primary reaction that oc curs during this process are:

$$\begin{split} & C(s) + Si(s) = SiC(s)\#(1) \\ & SiO_2(s) + C(s) = SiO(g) + CO(g)\#(2) \\ & Si(s) + SiO_2(s) = 2SiO(g)\#(3) \\ & SiO(g) + 2C(s) = SiC(s) + CO(g)\#(4) \\ & SiO(g) + 3CO(g) = SiC(s) + 2CO_2(g)\#(5) \\ & C(s) + CO_2(g) = 2CO(g)\#(6) \end{split}$$

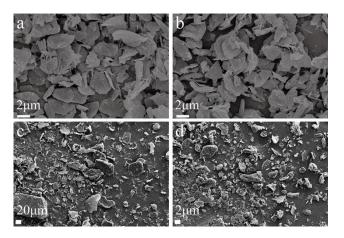


Fig. S 1 SEM of graphite powder. (a), (b): 1.6 µm; (c), (d): 36 µm.

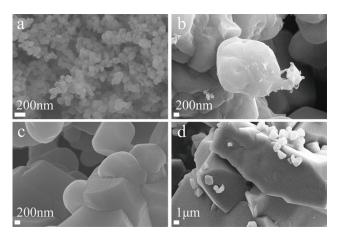


Fig. S 2 SEM images of samples. (a) $SiC_{06},$ (b) $SiC_1,$ (c) $SiC_3,$ and (d) $SiC_5.$

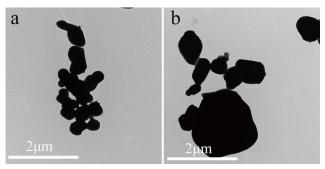


Fig. S 3 TEM images. (a) SiC₃, (b) SiC₅.

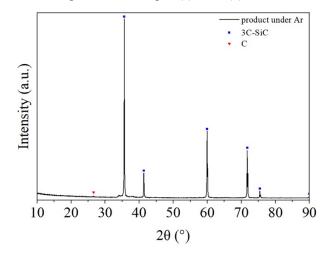
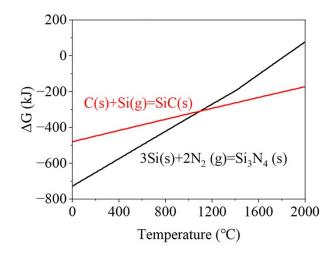



Fig. S 4 XRD of products obtained under Ar

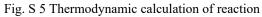


Fig. S 6 Impedance matching of (a) SiC_1 , (b) SiC_3 and (c) SiC_5 .