Supporting Information

Charge self-regulation of Ti₃C₂ MXene via rich unsaturated Ti sites for boosted photocatalytic hydrogen generation

Ying Cao^a, Ping Wang^{a,*}, Xuefei Wang^a, Feng Chen^a, Huogen Yu^{a,b,*}

^a School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of

Technology, Wuhan 430070, PR China

^b Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China

University of Geosciences, Wuhan, 430074, PR China

*Corresponding authors. Tel: +86(27)87749379; E-mail: wangping0904@whut.edu.cn (Ping Wang); huogenyu@163.com (Huogen Yu)

SI Experimental

SI-1 Photoelectrochemical measurements

Photoelectrochemical (PEC) curves were measured on an electrochemical analyzer (CHI660E, China) in a standard three-electrode configuration according to our previous works ^[1]. The prepared samples were loaded on fluorine-doped tin oxide (FTO) conductor glass, a standard Ag/AgCl electrode and the platinum foil as the working electrodes, reference electrode and counter electrode, respectively, with Na₂SO₄ (0.5 mol L⁻¹) as the electrolyte solution. The method of working electrodes was the same as in our previous works. Linear sweep voltammetry (LSV) curves were obtained in the potential ranging of -1.0 to -1.6 V with a scan rate of 10 mV s⁻¹. Transient photocurrent responses with time (*i-t* curves) were recorded at 0.5 V bias potential during periodic ON/OFF illumination cycles under a 3W LED lamp (365 nm). Electrochemical impedance spectroscopy (EIS) curves were conducted at the frequency range of $0.01-10^5$ Hz with an ac amplitude of 10 mV under the open-circuit voltage.

SI-2 Density functional theory calculation

The calculations were carried out by using the Vienna *ab* initio simulation package (VASP) ^[1-3]. The generalized gradient approximation (GGA) with Purdew-Burke-Ernzerhof (PBE) functional was selected to reveal the exchange-correlation interaction. The cutoff energy and Monkhorst-Pack k-point mesh was set as 450 eV and $3 \times 3 \times 1$, respectively. The convergence threshold d for total energy converged within 10^{-5} eV/atom and 0.01 eV·Å⁻¹ for force. The partial occupancies are determined using the Gaussian smearing smearing scheme with smearing width of 0.2 eV. To eliminate interactions between periodic structures, a vacuum of 15 Å was added. The Gibbs free energy of H atom adsorption (ΔG_{H^*}) was defined as following the equation S1:

$$\Delta G_{H^*} = \Delta E_{H^*} + \Delta E_{ZPE} - T\Delta S_H \tag{S1}$$

where ΔE_{H^*} , ΔE_{ZPE} , $T\Delta S_H$ are the differential hydrogen ΔE_{H^*} adsorption energy, the change in zero-point energy and entropy between the adsorbed hydrogen and molecular hydrogen in gas phase, respectively, and T is the temperature. By default the entropy of H₂ gas at 298 K is 130 J·mol⁻¹·K⁻¹, so the term $T\Delta S_H$ was calculated to be -0.20 eV. In this work, Ti₃C₂ model was constructed by removing Al atom in the Ti₃AlC₂ (002) model. The $(3 \times 3 \times 1)$ supercell containing 27 Ti and 18 C atoms of crystalline. $Ti_3C_2F_x$ structure was added 6 F atoms on the basis of Ti_3C_2 model and performed for the following theoretical calculations. On the basis of $Ti_3C_2F_x$ model, the Ti₃C₂F_x-U (002) model composed of 27 Ti atoms, 17 C atoms and 6 F atoms is constructed by digging out a carbon atom to simulate the broken Ti-C bonds and some surrounding saturated Ti atoms convert to unsaturated state. As a result, U in the Ti₃C₂F_x-U model represent the unsaturated Ti active sites with insufficient coordination. Additionally, three configurations are possible for the chemical F terminations on Ti₃C₂F_x-U system: (1) F functional groups located on the top of C atoms; (2) F functional groups located on the top of transition Ti metals; (3) F functional groups on top of the hollow sites (neither on the top of Ti metals nor C

atoms). The work function is defined as $\Phi = E_v - E_f$, where E_v and E_f are the electrostatic potentials of the vacuum and Fermi levels, respectively.

References

- 1. H. Long, P. Wang, X. Wang, F. Chen, H. Yu, Appl. Sur. Sci. 2022, 604, 154457.
- 2. D. Gao, H. Long, X. Wang, J. Yu, H. Yu, Adv. Funct. Mater., 2022, 34, 210847.
- 3. W. Zhong, B. Zhao, X. Wang, P. Wang, H. Yu, ACS Catal., 2023, 13, 749-756.

Supporting Information Content	Page
Table S1	S6
Fig. S1	
Fig. S2	
Fig. S3	
Fig. S4	
Fig. S5	S11
Fig. S6	

Sample	Ti-C	$Ti^{3+} + Ti^{2+}$
$Ti_3C_2F_x$	32.6%	23.4%
$Ti_3C_2F_x$ -20°C	28.4%	29.8%
$Ti_3C_2F_x$ -60°C	23.2%	35.1%
$Ti_3C_2F_x$ -100°C	21.5%	31.0%
$Ti_3C_2F_x$ -140°C	6.7%	9.5%

Table S1 Composition of the various samples based on the XPS result.

Fig. S1. FESEM images of (A) Ti_3AlC_2 , (B) $Ti_3C_2F_x$, (C) $Ti_3C_2F_x$ -20°C, (D) $Ti_3C_2F_x$ -60°C, (E) $Ti_3C_2F_x$ -100°C, and (F) $Ti_3C_2F_x$ -140°C after ultrasonic intercalation.

Fig. S2. (A) XPS survey spectra and the high-resolution spectra of (B) C 1s, (C) O 1s, (D) F 1s for (a) $Ti_3C_2F_x$, (b) $Ti_3C_2F_x$ -20°C, (c) $Ti_3C_2F_x$ -60°C, (d) $Ti_3C_2F_x$ -100°C, and

 $Ti_3C_2F_x$ -140°C.

(e)

Fig. S3 Photocatalytic H₂-evolution rate of (a) TiO_2 , (b) $Ti_3C_2F_x$ -60°C/TiO₂(0.1 wt%), (c) $Ti_3C_2F_x$ -60°C/TiO₂(1 wt%), (d) $Ti_3C_2F_x$ -60°C/TiO₂(5 wt%) (as $Ti_3C_2F_x$ -60°C/TiO₂), and (e) $Ti_3C_2F_x$ -60°C/TiO₂(10 wt%).

Fig. S4. The photocatalytic H₂-evolution rate of (A) (a) CdS, (b) $Ti_3C_2F_x$ -60°C/CdS and (B) (a) g-C₃N₄, (b) $Ti_3C_2F_x$ -60°C/g-C₃N₄.

Fig. S5 (A-C) Three configurations are possible for the F chemical terminations on $Ti_3C_2F_x$ -U models: (a) before H adsorption and (b) after H adsorption and (D) Gibbs free energy profiles (ΔG_{H^*}) for H_{ads} adsorption on Ti sites in different F terminated positions.

Fig. S6. (A) Linear sweep voltammetry (LSV) curves, (B) transient photocurrent response, and (C) electrochemical impedance (EIS) spectra of (a) TiO_2 , (b) $Ti_3C_2F_x/TiO_2$, (c) $Ti_3C_2F_x-20^{\circ}C/TiO_2$, (d) $Ti_3C_2F_x-60^{\circ}C/TiO_2$, (e) $Ti_3C_2F_x-100^{\circ}C/TiO_2$, and (f) $Ti_3C_2F_x-140^{\circ}C/TiO_2$.