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SI Experimental 

SI-1 Photoelectrochemical measurements

Photoelectrochemical (PEC) curves were measured on an electrochemical 

analyzer (CHI660E, China) in a standard three-electrode configuration according to 

our previous works [1]. The prepared samples were loaded on fluorine-doped tin oxide 

(FTO) conductor glass, a standard Ag/AgCl electrode and the platinum foil as the 

working electrodes, reference electrode and counter electrode, respectively, with 

Na2SO4 (0.5 mol L-1) as the electrolyte solution. The method of working electrodes 

was the same as in our previous works. Linear sweep voltammetry (LSV) curves were 

obtained in the potential ranging of -1.0 to -1.6 V with a scan rate of 10 mV s-1. 

Transient photocurrent responses with time (i-t curves) were recorded at 0.5 V bias 

potential during periodic ON/OFF illumination cycles under a 3W LED lamp (365 

nm). Electrochemical impedance spectroscopy (EIS) curves were conducted at the 

frequency range of 0.01-105 Hz with an ac amplitude of 10 mV under the open-circuit 

voltage. 

SI-2 Density functional theory calculation 

The calculations were carried out by using the Vienna ab initio simulation 

package (VASP) [1-3]. The generalized gradient approximation (GGA) with Purdew-

Burke-Ernzerhof (PBE) functional was selected to reveal the exchange-correlation 

interaction. The cutoff energy and Monkhorst-Pack k-point mesh was set as 450 eV 

and 3 × 3 × 1, respectively. The convergence threshold d for total energy converged 
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within 10−5 eV/atom and 0.01 eV·Å−1 for force. The partial occupancies are 

determined using the Gaussian smearing smearing scheme with smearing width of 0.2 

eV. To eliminate interactions between periodic structures, a vacuum of 15 Å was 

added. The Gibbs free energy of H atom adsorption (ΔGH*) was defined as following 

the equation S1: 

                          (S1)
∆𝐺

𝐻 ∗ = ∆𝐸
𝐻 ∗ + ∆𝐸𝑍𝑃𝐸 ‒ 𝑇∆𝑆𝐻 

where ΔEH*, ΔEZPE, TΔSH are the differential hydrogen ΔEH* adsorption energy, the  

change in zero-point energy and entropy between the adsorbed hydrogen and 

molecular hydrogen in gas phase, respectively, and  is the temperature. By default 𝑇

the entropy of H2 gas at 298 K is 130 J·mol-1·K-1, so the term  was calculated to 𝑇∆𝑆𝐻

be -0.20 eV. In this work, Ti3C2 model was constructed by removing Al atom in the 

Ti3AlC2 (002) model. The (3 × 3 × 1) supercell containing 27 Ti and 18 C atoms of 

crystalline. Ti3C2Fx structure was added 6 F atoms on the basis of Ti3C2 model and 

performed for the following theoretical calculations. On the basis of Ti3C2Fx model, 

the Ti3C2Fx-U (002) model composed of 27 Ti atoms, 17 C atoms and 6 F atoms is 

constructed by digging out a carbon atom to simulate the broken Ti-C bonds and some 

surrounding saturated Ti atoms convert to unsaturated state. As a result, U in the 

Ti3C2Fx-U model represent the unsaturated Ti active sites with insufficient 

coordination. Additionally, three configurations are possible for the chemical F 

terminations on Ti3C2Fx-U system: (1) F functional groups located on the top of C 

atoms; (2) F functional groups located on the top of transition Ti metals; (3) F 

functional groups on top of the hollow sites (neither on the top of Ti metals nor C 
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atoms). The work function is defined as Φ = Ev- Ef, where Ev and Ef are the 

electrostatic potentials of the vacuum and Fermi levels, respectively.
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Table S1 Composition of the various samples based on the XPS result.

Sample Ti-C Ti3+ + Ti2+

Ti3C2Fx 32.6% 23.4%

Ti3C2Fx-20oC 28.4% 29.8%

Ti3C2Fx-60oC 23.2% 35.1%

Ti3C2Fx-100oC 21.5% 31.0%

Ti3C2Fx-140oC 6.7% 9.5%
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Fig. S1. FESEM images of (A) Ti3AlC2, (B) Ti3C2Fx, (C) Ti3C2Fx-20oC, (D) Ti3C2Fx-

60oC, (E) Ti3C2Fx-100oC, and (F) Ti3C2Fx-140oC after ultrasonic intercalation.
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Fig. S2. (A) XPS survey spectra and the high-resolution spectra of (B) C 1s, (C) O 1s, 

(D) F 1s for (a) Ti3C2Fx, (b) Ti3C2Fx-20oC, (c) Ti3C2Fx-60oC, (d) Ti3C2Fx-100oC, and 

(e) Ti3C2Fx-140oC.
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Fig. S3 Photocatalytic H2-evolution rate of (a) TiO2, (b) Ti3C2Fx-60oC/TiO2(0.1 

wt%), (c) Ti3C2Fx-60oC/TiO2(1 wt%), (d) Ti3C2Fx-60oC/TiO2(5 wt%) (as 

Ti3C2Fx-60oC/TiO2), and (e) Ti3C2Fx-60oC/TiO2(10 wt%).
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Fig. S4. The photocatalytic H2-evolution rate of (A) (a) CdS, (b) Ti3C2Fx-60oC/CdS 

and (B) (a) g-C3N4, (b) Ti3C2Fx-60oC/g-C3N4.
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Fig. S5 (A-C) Three configurations are possible for the F chemical terminations on 

Ti3C2Fx-U models: (a) before H adsorption and (b) after H adsorption and (D) Gibbs 

free energy profiles (ΔGH*) for Hads adsorption on Ti sites in different F terminated 

positions.
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Fig. S6. (A) Linear sweep voltammetry (LSV) curves, (B) transient photocurrent 

response, and (C) electrochemical impedance (EIS) spectra of (a) TiO2, (b) 

Ti3C2Fx/TiO2, (c) Ti3C2Fx-20oC/TiO2, (d) Ti3C2Fx-60oC/TiO2, (e) Ti3C2Fx-100oC/TiO2, 

and (f) Ti3C2Fx-140oC/TiO2.


