High-conductivity Graphene/Carbon Black Inks by Interpenetrating Networks for Wearable Fabric-based Heaters and Strain Sensors

Yujin Zhang ^a, Xiangping Chen ^b, Yuqi Dong ^a, Guowen Zhang ^a, Huizhuo Cai ^a,

Yongcai Wu^a, Yongxiao Bai^{a,*}

^a Institute of Soft-Matter and Advanced Functional Materials, Carbon New Materials Industry Technology Center of Gansu Province, Key Laboratory of Special Function Materials and Structure Design of Ministry of Education, Lanzhou University, Lanzhou 730000, China.

^b Northwest Institute for Non-Ferrous Metal Research, Xian, 710016, China.

^{1 *}Corresponding Authors E-mail: baiyx@lzu.edu.cn. Phone: +86 931 8915855, Fax: +86931 8915855.

Fig. S1 (a) AFM image and (b) height profiles of Gr on a mica sheet.

Fig. S2 (a) SEM image of Exfoliated Gr/CB dispersion, (b) histograms of lateral flake

size.

Fig. S3 (a) AFM image and (b) height profiles of CB on a mica sheet.

Fig. S4 Raman spectra for Gt, Gr, CB, and Gr/CB dispersion.

Fig. S5 (a) XPS survey spectra of Gt, Gr, CB, and Gr/CB. High-resolution C_{1s} of (b)

the Gt and (c) the exfoliated Gr/CB dispersion.

Fig. S6 SEM images of (a) pristine fabric, (b) TPU-Fabric. SEM image of the number of different screen-printing cycles of Gr/CB@TPU-Fabric(c) 1 cycle, (d) 2 cycles, (e) 3 cycles, (f) 4 cycles, (g) 5 cycles. (h) SEM cross-section images of Gr-ink@ Fabric for printing 4 cycles.

Fig. S7 Relationship between the number of screen-printing cycles and charge number of Gr/CB@TPU-Fabric.

Fig. S8 Comparison of the electrical properties of the Gr/CB@TPU-Fabric and previously reported graphene-based conductive fabrics.

Fig. S9 The IR thermal photographs of the Gr/CB@TPU-Fabric (Scale bar: 2 cm).

Fig. S10 Heating-cooling cycles stability of graphene conductive fabric under 9 V.

Fig. S11 The relationship between various parameters of Gr/CB@TPU-Fabric with different areas for Voltage and current.

Fig. S12 Schematic diagram of preparation process of Gr/CB@TPU-Fabric-based strain sensor.

Fig. S13 The relationship between the relative resistance changes and Gr/CB@TPU-Fabric-based strain sensor strain with different pre-stretching strains.

Heating Materials	Heating Area (cm ²)	Voltage Range (V)	Temperature at low voltage (°C)	Ref.	
Ag NPs/MXene	<5×5	10-17.5	7.5 37.7 (10 V)		
rGO/CNT/Cu	2×2	2-5	51.0 (4 V)	33	
Gr/CNT/PEDOT:PS	3×2	10-30	42.3 (10 V)	34	
S					
MXene/Ppy	3×3	4-10	40.1 (4 V)	35	
PEDOT	4×4	2-10	24.1 (2 V)	36	
PEDOT:PSS	1×1	3-6	27.0 (3 V)	37	
PEDOT:PSS/rGO	3×1	5-30	31.5 (5 V)	5 (5 V) ³⁸	
rGO/Ppy	2×2	3-9	42.4 (3 V)	39	
Gr/CB ink	8.5×16	3-7	53.4 (3 V)	Our work	

 Table S1. Summary of some wearable fabric-based heaters and their performances.

Materials	Methods	Strain range (%)	GF	Response Time (ms)	Ref.
Graphene	CVD	<10	34.3-48.9 (8%)	-	40
RGO	Dipping	0.05-75	~8.9 (<5%)	-	41
Gr/PVDF/PU	Phase-separation	0.01-10	51 (0-5%) 87 (5-8%)	<100	42
RGO	Wet-spinning/ Vacuum filtration	0.24-70	1200 (20%)	~30	43
RGO/TPU	Electrospinning	0-150	~50 (50%)	<160	44
GNPs/CB	Dip-coating	0-60	5.62 (4%)	<209	45
GNPs/CB ink	Dip-coating	0-200	5 (0-127%) 7.75 (127-200%)	~172	46
RGO	Dip-coating	0-100	10 (<1%) 3.7 (<50%)	<100	47
GNPs	LbL	0-150	1.4	-	48
GO	Screen-printing	-	-	-	49
Graphene	Coating	0-80	6.04 (0-21%) 1.97 (26-80%)	-	50
RGO ink	Spraying	0-23	60 (<10%) 1747 (~15-20%)	80	51
MXene/ PANI	Dip-coating	0.5-100	~16.66	90	52
PANI/RGO	Dipping	0-50	24 (0-5%) 6 (5-20%) 1.27 (20-50%)	85	53
RGO	Dip and reduce	0-150	1.5 (0-10%) 6 (10-150%)	40	54
Gr/CB ink	Screen-printing	0-10	307.79 (0-1.8%) 628.61 (1.8-4%) 30.83 (4-10%)	87.4	This work

 Table S2. Summary of performance of flexible fabric-based strain sensors.