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Fig. S1 (a) AFM image and (b) height profiles of Gr on a mica sheet.

Fig. S2 (a) SEM image of Exfoliated Gr/CB dispersion, (b) histograms of lateral flake 

size.

Fig. S3 (a) AFM image and (b) height profiles of CB on a mica sheet.

Fig. S4 Raman spectra for Gt, Gr, CB, and Gr/CB dispersion. 
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Fig. S5 (a) XPS survey spectra of Gt, Gr, CB, and Gr/CB. High-resolution C1s of (b) 

the Gt and (c) the exfoliated Gr/CB dispersion.

Fig. S6 SEM images of (a) pristine fabric, (b) TPU-Fabric. SEM image of the number 

of different screen-printing cycles of Gr/CB@TPU-Fabric(c) 1 cycle, (d) 2 cycles, (e) 

3 cycles, (f) 4 cycles, (g) 5 cycles. (h) SEM cross-section images of Gr-ink@ Fabric for 

printing 4 cycles.
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Fig. S7 Relationship between the number of screen-printing cycles and charge number 

of Gr/CB@TPU-Fabric.

Fig. S8 Comparison of the electrical properties of the Gr/CB@TPU-Fabric and 

previously reported graphene-based conductive fabrics.

Fig. S9 The IR thermal photographs of the Gr/CB@TPU-Fabric (Scale bar: 2 cm).
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Fig. S10 Heating-cooling cycles stability of graphene conductive fabric under 9 V.

Fig. S11 The relationship between various parameters of Gr/CB@TPU-Fabric with 

different areas for Voltage and current.

Fig. S12 Schematic diagram of preparation process of Gr/CB@TPU-Fabric-based 

strain sensor.
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Fig. S13 The relationship between the relative resistance changes and Gr/CB@TPU-

Fabric-based strain sensor strain with different pre-stretching strains.

Table S1. Summary of some wearable fabric-based heaters and their performances.

Heating

Materials

Heating

Area (cm2)

Voltage

Range (V)

Temperature

at low voltage 

(℃)

Ref.

Ag NPs/MXene ＜5×5 10-17.5 37.7 (10 V) 32

rGO/CNT/Cu 2×2 2-5 51.0 (4 V) 33

Gr/CNT/PEDOT:PS

S

3×2 10-30 42.3 (10 V) 34

MXene/Ppy 3×3 4-10 40.1 (4 V) 35

PEDOT 4×4 2-10 24.1 (2 V) 36

PEDOT:PSS 1×1 3-6 27.0 (3 V) 37

PEDOT:PSS/rGO 3×1 5-30 31.5 (5 V) 38

rGO/Ppy 2×2 3-9 42.4 (3 V) 39

Gr/CB ink 8.5×16 3-7 53.4 (3 V) Our work
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Table S2. Summary of performance of flexible fabric-based strain sensors.

Materials Methods
Strain 
range
(%)

GF
Response 

Time
(ms)

Ref.

Graphene CVD ＜10 34.3-48.9 (8%) - 40

RGO Dipping 0.05-75 ~8.9 (＜5%) - 41

Gr/PVDF/PU Phase-separation 0.01-10
51 (0-5%)
87 (5-8%)

＜100 42

RGO
Wet-spinning/

Vacuum filtration
0.24-70 1200 (20%) ~30 43

RGO/TPU Electrospinning 0-150 ~50 (50%) ＜160 44

GNPs/CB Dip-coating 0-60 5.62 (4%) ＜209 45

GNPs/CB 
ink

Dip-coating 0-200
5 (0-127%)

7.75 (127-200%)
~172 46

RGO Dip-coating 0-100
10 (＜1%)

3.7 (＜50%)
＜100 47

GNPs LbL 0-150 1.4 - 48

GO Screen-printing - - - 49

Graphene Coating 0-80
6.04 (0-21%)
1.97 (26-80%)

- 50

RGO ink Spraying 0-23
60 (＜10%)

1747 (~15-20%)
80 51

MXene/
PANI

Dip-coating 0.5-100 ~16.66 90 52

PANI/RGO Dipping 0-50
24 (0-5%)
6 (5-20%)

1.27 (20-50%)
85 53

RGO Dip and reduce 0-150
1.5 (0-10%)
6 (10-150%)

40 54

Gr/CB ink Screen-printing 0-10
307.79 (0-1.8%)
628.61 (1.8-4%)
30.83 (4-10%)

87.4
This
work


