Electronic Supplementary Information

Interlayer sliding induced antiferroelectricityferroelectricity-antiferroelectricity transition in bilayer *δ***-** SiX $(X = S/Se)$

Zihan Qu¹, Xiaoteng Wang¹, Jishun Zhang¹, Shuo Jiang¹, Zuyu Xu¹, Fei Yang¹, Zuheng Wu^{1*}, Yuehua Dai^{1*}, and Yunlai Zhu^{1*}

^a School of Integrated Circuits, Anhui University, Hefei, Anhui, 230601, China.

Corresponding Authors

*E-mail: [wuzuheng@ahu.edu.cn](mailto:wuzuheng@ahu.edu.cn%20(Z.-H) (Z.-H. Wu), daiyuehua2013@163.com (Y.-H. Dai), zhuyunlai@ahu.edu.cn (Y.-L. Zhu)

S1. Interpretation of AA-AB, AA-AC, AA-AD slip path in top views.

In order to simplify the process of configuration sliding, we only select a part of the AA configuration (highlighted region 1) as a schematic. To transition to AB stacking, we shift the upper SiS layer of the AA configuration by *a*/2 along the *x*-axis, as illustrated in **Fig. S1(a)**. Similarly, AC stacking could be obtained by shifting the upper SiS layer of AA structure by *b*/2 along the *y*-axis, as depicted in **Fig. S1(b)**. Initially, AD configuration is attained by *a*/2 along the *x*-axis, followed by *b*/2 along the *y*-axis, as demonstrated in **Fig. S1(c)**.

Fig. S1 (a) Interpretation of AA-AB slip path in top views. (b) Interpretation of AA-AC slip path in top views. (c) Interpretation of AA-AD slip path in top views. The emphasized regions (1, 2, 3, 4) are partial sliding changes during the sliding process.

S2. Interpretation of AA, AB and anti-AB stacking in side views.

To clearly identify the difference between AA and AB stacking, we highlighted the region 1 and region 2 to analyze their atomic structure changes. As shown in **Fig. S2(a)** and **(b)**, region 1 shifts *a*/2 along the *x*-axis to reach region 2, inducing a distinct variation in the marked region and then obtaining AB stacking. Furthermore, for AB stacking of bilayer *δ*-SiS, when the polarization of each monolayer is oriented in the same direction, it demonstrates a ferroelectric state, referred to as the AB stacking. Conversely, when the polarization directions of each monolayer oppose each other, it exhibits an antiferroelectric state, termed an anti-AB stacking structure, depicted in **Fig. S2(c)**.

Fig. S2 Side views of (a) AA, (b) AB and (c) anti-AB stacking. The highlighted regions (1, 2) are partial sliding changes during the sliding process. The black rectangular display the difference in AA and AB stacking in the side views.

S3. Available ferroelectric (FE) and anti-ferroelectric (AFE) stackings and their energy difference between FE and AFE state.

Fig. S3 (a) Top and side views of atomic structures of bilayer δ -SiS (X = S / Se) for FE and AFE state. (b) Total energy difference between FE and AFE state for SiS and SiSe bilayers.

S4. The detailed total energies *E* and energy difference E_{diff} of bilayer δ -SiX (X = **S / Se) among all possible stackings.**

According to energy computations from Xu *et al.*, *Ediff* can be defined as the energy difference between total energy with different stackings and the lowest energy in FE or AFE state among all stackings.

$$
E_{diff} = E - E_{lowest}
$$

where *E* is corresponding energy for different stackings and E_{lowest} is the lowest energy among all stackings in two states (FE and AFE).

By computing the total energies and comparing them systematically in different stackings, we can conclude that bilayer δ -SiX (X = S / Se) prefers to be in AFE state under AB and AC stacking, while being in FE state under AA and AD stacking, listed in **Table S1**. Meanwhile, the lowest energy in bilayer SiS or SiSe is set as a reference to reflect the energy difference among different stackings and states intuitively.

Materials			FE state	AFE state		
	Stackings	E (eV)	E_{diff} (meV)	E (eV)	E_{diff} (meV)	
	AA	-78.814	211	-78.788	237	
SiS	AB	-78.946	79		$\bf{0}$	
	AC	-78.785	240	-78.839	186	
	AD	-78.769	256	-78.742	283	
	AA	-73.113	868	-73.068	913	
SiSe	AB	-72.995	986	-73.063	918	
	AC	-72.922	1059	-73.981	$\bf{0}$	
	AD	-73.067	914	-73.022	959	

Table S1 The total energies E and energy differences E_{diff} for per unit of AA, AB, AC and AD stacking of bilayer δ -SiX (X = S/Se) under FE and AFE state. The emphasized data are the lowest energy among eight stackings, considering FE and AFE states.

S5. Atomic structures of reversible AFE-FE-AFE transition through mechanical interlayer sliding along the path $\mathbf{AC}_{\mathrm{AFE}}\text{-}\mathbf{AD}_{\mathrm{FE}}\text{-}\mathbf{AC}_{\mathrm{AFE}}$ of bilayer δ -SiS.

Fig. S4 Atomic structures of reversible AFE-FE-AFE transition under mechanical interlayer sliding for bilayer δ -SiS of AC stacking. Parameter a is the lattice constant in the *x*-direction.

S6. Atomic structures of reversible AFE-FE-AFE transition through mechanical interlayer sliding along the path AC_{AFE} **-AD**_{FE}-AC_{AFE} of bilayer δ -SiSe.

Fig. S5 Atomic structures of reversible AFE-FE-AFE transition under mechanical interlayer sliding for AC stacking of bilayer *δ*-SiSe. Parameter *a* is the lattice constant in the *x*-direction.

S7. Variations in relative energy and polarization under the path $AC_{AFE} - AD_{FE}$ **ACAFE for bilayer** *δ***-SiSe.**

As shown in Fig. $S6(a)$, for AC_{AFE} - AD_{FE} - AC_{AFE} transition, total energy of bilayer SiSe in the AC_{AFE} stacking initially decreases to 0 at a sliding distance of 0.2 a , gradually rises to realize the AFE-FE transition between 0.26 *a* and 0.27 *a*, steadily increases up to 5.88 meV/atom at the AD_{FE} stacking, and finally exhibits a large increasement of 10.06 meV/atoms to its utmost until it reaches original position. Also, the polarization magnitude reaches up to \sim 70 μ C/cm² with the sliding distance increasing, also indicates a reversible AFE-FE-AFE transition during the AC_{AFE} -A C_{AFE} sliding process, shown in **Fig. S6(b)**.

Fig. S6 Variations in relative energy and polarization under the path AC_{AFE} - AD_{FE} -ACAFE. (a) The relative total energy and (b) polarization curve of bilayer *δ*-SiSe.

S8. Phonon spectrum of bilayer *δ***-SiS in AAFE stacking.**

Fig. S7 Phonon spectrum of bilayer δ -SiS in AA_{FE} stacking.

S9. Planar average charge density of path ABAFE-AAFE-ABAFE and path ACAFE-ADFE-ACAFE with sliding distance between 0.2 *a* **and 0.3** *a***.**

Fig. S8 The planar average charge density of path $AB_{AFE}-AA_{FE}-AB_{AFE}$ with sliding distance between (a) 0.2 a and (b) 0.3 a and path AC_{AFE} - AD_{FE} - AC_{AFE} with sliding distance between (c) $0.2 a$ and (b) $0.3 a$ for bilayer δ -SiS.

S10. Interlayer sliding effect on related lattice parameters and energy for path ACAFE-ADFE-ACAFE.

Fig. S9 (a) Interlayer distance change with respect to sliding distance. (b) Lattice strain variation under interlayer sliding moving from 0 *a* to 1 *a*. (c) *Einter* and (d) *E^ε* of the relaxed bilayer *δ*-SiS through mechanical sliding.

S11. Interlayer sliding effect on related lattice parameters and energy for path ACAFE-ADFE-ACAFE.

Table S2. Total energies (eV) variations in the sliding process with interlayer distance constrained under AFE and FE state for *δ*-SiS bilayer.

State	$\mathbf{0}$	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	
AВ	-78.662	-78.662	-78.661	-78.656	-78.649	-78.645	-78.649	-78.656	-48.661	-78.662	-78.662
anti-AB	-78.667	-78.673	-78.671	-78.659	-78.645	-78.64	-78.644	-78.65	-78.654	-78.659	-78.667

REFERENCES

¹ Bo Xu, Junkai Deng, Xiangdong Ding, Jun Sun, and Jefferson Zhe Liu, npj Computational Materials **8**, 47 (2022).