Electronic Supplementary Information

## Highly Efficient Blue-Green Dual-Narrow-Emission in RbAl<sub>11</sub>O<sub>17</sub>:Eu<sup>2+</sup>, Mn<sup>2+</sup> toward

## Wide-Color-Gamut Human-Centric Backlights

Yali Xue, Yujun Liang\*, Weilun Zhang, Xiaodeng Wu, Chuang Han

Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China. E-mail: yujunliang@sohu.com

| Phosphors                                                                    | λ <sub>em</sub> (nm) | FWHM (nm) | λ <sub>ex</sub><br>(nm) | Thermal behavior | IQE | NTSC | Ref.         |
|------------------------------------------------------------------------------|----------------------|-----------|-------------------------|------------------|-----|------|--------------|
| β-sialon:Eu <sup>2+</sup>                                                    | 540                  | 55        | 405                     | 81% (150 °C)     | 71% | 101% | 13           |
| γ-AlON:Mn <sup>2+</sup>                                                      | 520                  | 44        | 445                     | 76% (150 °C)     | 62% | 102% | 25           |
| LaZnAl <sub>11</sub> O <sub>19</sub> :Eu <sup>2+</sup> ,<br>Mn <sup>2+</sup> | 515                  | 26        | 350                     | 80% (150 °C)     | 88% | 123% | 23           |
| MgAl <sub>2</sub> O <sub>4</sub> :Mn <sup>2+</sup>                           | 525                  | 35        | 450                     | 92% (150 °C)     | 45% | 116% | 26           |
| Sr <sub>2</sub> MgAl <sub>22</sub> O <sub>36</sub> :Mn <sup>2+</sup>         | 518                  | 26        | 450                     | 80% (150 °C)     | 75% | 127% | 27           |
| BaZnAl <sub>10</sub> O <sub>17</sub> :Mn <sup>2+</sup>                       | 516                  | 31        | 450                     | 88% (150 °C)     | 86% | 110% | 28           |
| CsPbBr <sub>3</sub>                                                          | 523                  | 20        | 450                     | 62% (150 °C)     | 63% | 102% | 55           |
| RbAl <sub>11</sub> O <sub>17</sub> :Eu <sup>2+</sup> , Mn <sup>2+</sup>      | 511                  | 26        | 345                     | 54% (150 °C)     | 63% | 118% | This<br>work |

Table S1. Photoluminescence properties of several green-emitting phosphors for backlight display applications.



Figure S1 Rietveld refinement patterns of  $Rb_{0.80}AI_{11}O_{17}$ : 0.20Eu<sup>2+</sup> and  $RbAI_{10.70}O_{17}$ : 0.30Mn<sup>2+</sup> samples.



Figure S2 The morphology and elemental distribution of  $Rb_{0.80}AI_{10.95}O_{17}$ :0.20Eu<sup>2+</sup>, 0.05Mn<sup>2+</sup>.



Figure S3 XRD patterns of  $Rb_{1-x}Al_{11}O_{17}$ :  $xEu^{2+}$  with the standard  $RbAl_{11}O_{17}$  data.



Figure S4 The relationship between lg(I/x) and lg(x) in  $Rb_{1-x}Al_{11}O_{17}:xEu^{2+}$ .



Figure S5 Temperature-dependent emission spectra of  $Rb_{0.80}AI_{11}O_{17}$ : 0.20Eu<sup>2+</sup>.



Figure S6 XRD patterns of  $RbAl_{11-y}O_{17}$ :  $yMn^{2+}$  with the standard data.



Figure S7 The normalized emission spectra of  $RbAI_{10.70}O_{17}$ :0.30Mn<sup>2+</sup> at different temperatures.



Figure S8 XRD patterns of  $Rb_{0.80}AI_{11-z}O_{17}$ :0.20Eu<sup>2+</sup>,  $zMn^{2+}$  with the standard data.



Figure S9 The excitation spectra of  $Rb_{0.80}AI_{11-z}O_{17}$ :0.20Eu<sup>2+</sup>,  $zMn^{2+}$  with 510 nm emission.



Figure S10 UV-vis diffuse reflectance spectra of the RbAl<sub>11</sub>O<sub>17</sub>, Rb<sub>0.80</sub>Al<sub>11</sub>O<sub>17</sub>:0.20Eu<sup>2+</sup>, RbAl<sub>10.70</sub>O<sub>17</sub>:0.30Mn<sup>2+</sup> and Rb<sub>0.80</sub>Al<sub>10.95</sub>O<sub>17</sub>:0.20Eu<sup>2+</sup>, 0.05Mn<sup>2+</sup> samples.



Figure S11 Emission ( $\lambda_{ex}$  = 345, 450 nm) and excitation ( $\lambda_{em}$  = 511 nm) spectra of Rb<sub>0.80</sub>Al<sub>10.95</sub>O<sub>17</sub>:0.20Eu<sup>2+</sup>, 0.05Mn<sup>2+</sup> and RbAl<sub>10.70</sub>O<sub>17</sub>:0.30Mn<sup>2+</sup>.



Figure S12 The  $\eta_{ET}$  depending on the Mn<sup>2+</sup> doping concentration in Rb<sub>0.80</sub>Al<sub>11-</sub> <sub>z</sub>O<sub>17</sub>:0.20Eu<sup>2+</sup>, zMn<sup>2+</sup> phosphors.



Figure S13 Linear fits of  $I_0/I_s$  and  $C^{n/3}$  at n values of 6, 8 and 10 in  $Rb_{0.80}AI_{10.80}O_{17}$ : 0.20Eu<sup>2+</sup>, 0.2Mn<sup>2+</sup>.



Figure S14 The energy transfer process between  $Eu^{2+}$  and  $Mn^{2+}$  in  $RbAl_{11}O_{17}:Eu^{2+}$ ,  $Mn^{2+}$ .



Figure S15 Temperature-dependent emission intensity of  $R_{0.80}A_{10.95}O:0.20Eu^{2+}$ ,  $0.05Mn^{2+}$  and  $R_{0.80}A_{10.80}O:0.20Eu^{2+}$ ,  $0.20Mn^{2+}$  during the heating process under a 345 nm UV light source.



Figure S16 The activation energy (Ea) of  $Rb_{0.80}AI_{10.95}O_{17}$ : 0.20Eu<sup>2+</sup>, 0.05Mn<sup>2+</sup> and  $Rb_{0.80}AI_{10.80}O_{17}$ : 0.20Eu<sup>2+</sup>, 0.20Mn<sup>2+</sup>.