Supplementary information

Temperature dependent Raman study of

antiferromagnetic CrPS₄

Manh Hong Nguyen¹, Suhan Son², Giung Park², Woongki Na¹, Je-Geun Park²* and Hyeonsik Cheong¹*

¹Department of Physics, Sogang University, Seoul 04107, Korea ²Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea

*Corresponding-author email: jgpark10@snu.ac.kr, hcheong@sogang.ac.kr

Figure S1. (a) Optical image and (b) AFM image of a few-layer CrPS₄ sample. (c) Height profiles measured along the lines indicated in (b).

Our work		Theoretical work by S. N. Neal <i>et al.</i> ¹				
Peak	Frequency	Frequency	Vibrational motion			
label	(cm^{-1})	(cm^{-1})	Vibrational motion			
P 1	86.0	78.3	Out-of-plane Cr translation + Out-of-plane S			
DI			displacement			
B2	116.0	106.1	P-S rocking motion			
A1	119.0	107.7	In-plane Cr translation + S shearing			
В3	156.9	142.0	Out-of-plane Cr translation + Out-of-plane S			
			displacement			
A2	170.7	162.9	In-plane P-S translation			
A3	179.9	172.9	Out-of-plane P-S motion			
A4	217.3	207.8				
D4	233.2	225.3	In-plane Cr translation + P translation + Out-of-plane S			
D4			motion			
B5	258.3	249.8	In-plane S shearing			
۸.5	269.4	259.2	In-plane Cr translation + P translation+ In-plane and			
AJ			Out-of-plane motion			
B6	300.1	294.3	Cr motion + S In-plane counter motion			
A6	307.5	296.2	In-plane Cr translation + S scissoring			
A7	325.0	310.9	In-plane Cr translation + In-plane S shearing + Out-of-			
			plane P translation			
B7	350.3	342.9	Out-of-plane Cr translation + S In-plane motion			

Table S1. Comparison of Raman peaks measured at 293 K with calculated phonon modes of bulk CrPS₄.

Figure S2. Raman spectra of bulk CrPS₄ with three different excitations: 1.96-eV (red), 2.41eV (green) and 2.71-eV (blue) excitations in $[\bar{z}(xx)z]$ (thick lines) and $[\bar{z}(yy)z]$ (thin lines) polarization configurations at 293 and 4 K.

Figure S3. Polarization dependences of A modes in CrPS₄ at 4 K (black) and 293 K (red). The dots and lines are experimental data and fitting, respectively. These data were collected with the 2.41-eV excitation.

Figure S4. Polarization dependences of the B modes in CrPS₄ at 4 K (black) and 293 K (red). The dots and lines are experimental data and fitting, respectively. These data were collected with the 2.41-eV excitation.

Figure S5. Polarization dependences of the A6 mode of a bulk CrPS₄ sample at 4 K (black) and 293 K (red) measured with 1.96-eV and 2.71-eV excitations, respectively. The dots and lines are experimental data and fitting, respectively.

Figure S6. Temperature dependence of Raman spectra of a bulk sample, measured with the 2.41-eV excitation in the parallel $[\bar{z}(xx)z]$ (thick lines) and cross $[\bar{z}(xy)z]$ (thin lines) polarization configurations.

Figure S7. Raman spectra of few-layer CrPS₄ samples at 293 K, measured with the 2.41 eVexcitation in the parallel $[\bar{z}(xx)z]$ (thick lines) and cross $[\bar{z}(xy)z]$ (thin lines) polarization configurations.

Figure S8. (a) Temperature dependence of Raman spectra of a 2L CrPS₄ sample in the parallel $[\bar{z}(xx)z]$ (thick lines) and cross $[\bar{z}(xy)z]$ (thin lines) polarization configurations. (b) Temperature dependence of the A3 mode of a 2L sample. (c) Temperature dependence of the A6 mode of a 2L sample for two different polarizations of $[\bar{z}(xx)z]$ (orange) and $[\bar{z}(xx)z]$ (blue). The Raman spectra were recorded with the 2.41-eV excitation. (d) Temperature dependence of the peak position (black) and the height (green) extracted from (b). (e) Temperature dependence of the intensity ratio of the two polarizations in (c). The error bars indicate the experimental uncertainties.

Figure S9. (a) Temperature dependence of Raman spectra of a 3L CrPS₄ sample in the parallel $[\bar{z}(xx)z]$ (thick lines) and cross $[\bar{z}(xy)z]$ (thin lines) polarization configurations. (b) Temperature dependence of the A3 mode of a 3L sample. (c) Temperature dependence of the A6 mode of a 3L sample for two different polarizations of $[\bar{z}(xx)z]$ (orange) and $[\bar{z}(yy)z]$ (blue). The Raman spectra were recorded with the 2.41-eV excitation. (d) Temperature dependence of the peak position (black) and the height (green) extracted from (b). (e) Temperature dependence of the intensity ratio of the two polarizations in (c). The error bars indicate the experimental uncertainties.

Figure S10. (a) Temperature dependence of Raman spectra of a 4L CrPS₄ sample in the parallel $[\bar{z}(xx)z]$ (thick lines) and cross $[\bar{z}(xy)z]$ (thin lines) polarization configurations. (b) Temperature dependence of the A3 mode of a 4L sample. (c) Temperature dependence of the A6 mode of a 4L sample for two different polarizations of $[\bar{z}(xx)z]$ (orange) and $[\bar{z}(yy)z]$ (blue). The Raman spectra were recorded with the 2.41-eV excitation. (d) Temperature dependence of the peak position (black) and the height (green) extracted from (b). (e) Temperature dependence of the intensity ratio of the two polarizations in (c). The error bars indicate the experimental uncertainties.

Figure S11. (a) Temperature dependence of Raman spectra of a 5L CrPS₄ sample in the parallel $[\bar{z}(xx)z]$ (thick lines) and cross $[\bar{z}(xy)z]$ (thin lines) polarization configurations. (b) Temperature dependence of the A3 mode of a 5L sample. (c) Temperature dependence of the A6 mode of a 5L sample for two different polarizations of $[\bar{z}(xx)z]$ (orange) and $[\bar{z}(yy)z]$ (blue). The Raman spectra were recorded with the 2.41-eV excitation. (d) Temperature dependence of the peak position (black) and the height (green) extracted from (b). (e) Temperature dependence of the intensity ratio of the two polarizations in (c). The error bars indicate the experimental uncertainties.

Our work				Work by Lee <i>et al</i> . ²					
Peak	2L	3L	4L	5L	Peak	2L	3L	4L	5L
label					label				
B1	87.3	87.3	87.0	86.6					
B2	113.7	114.7	114.5	114.9					
A1	115.1	116.1	116.0	116.7	А	112.7	114.7	115.6	116.7
B3	153.4	154.1	154.1	154.6	В	151.0	153.3	154.5	155.7
A2	169.8	169.8	169.7	169.7	С	171.6	169.4	169.7	170.3
A3									
A4	216.0	216.4	216.3	216.2	D	215.4	215.6	215.9	216.4
B4	231.9	232.2	232.0	232.1	Е	230.2	231.6	232.1	232.3
B5	257.2	257.4	257.3	257.1	F	256.9	256.7	256.9	257.4
A5	265.9	266.5	266.3	266.9	G	263.5	265.6	266.6	267.6
B6	298.9	298.9	298.6	298.3	Н	297.9	297.7	298.3	298.9
A6	307.0	307.0	306.5	305.8	Ι	306.5	306.0	306.1	306.7
A7	324.0	324.0	323.6	323.5	J	323.1	323.2	323.4	323.8
B7	347.4	347.8	347.8	347.9	K	346.7	347.4	347.8	348.6

Table S2. Raman peak frequency (cm⁻¹) of few-layer CrPS4 samples that were recorded with 2.41-eV excitation at 293 K in our work and comparison with a previous report.

Our work				Work by J.Lee <i>et al.</i> ²					
Peak	2L	3L	4L	5L	Peak	2L	3L	4L	5L
label					label				
B1	3.5	3.4	3.1	2.3					
B2	4.5	1.7	1.6	1.4					
A1	6.8	3.3	3.0	2.6	А	6.5	4.9	5.6	6.1
B3	5.5	2.9	2.8	2.6	В	7.0	4.7	4.5	3.8
A2	2.9	3.1	3.2	2.8	С	8.2	5.2	5.0	4.6
A3									
A4	5.6	4.3	4.1	3.3	D	14.7	5.7	5.1	5.2
B4	2.1	2.7	2.3	2.3	Е	7.3	5.3	5.8	5.2
B5	5.6	4.8	4.7	3.9	F	10.8	6.3	5.7	5.3
A5	2.9	2.9	3.1	2.5	G	3.5	3.9	4.4	4.2
B6	5.0	4.4	4.5	3.6	Н	9.9	6.7	5.9	5.0
A6	4.8	4.9	4.9	3.9	Ι	9.1	6.3	5.6	5.0
A7	2.9	2.8	3.1	2.8	J	4.7	4.5	5.3	3.7
B7	1.8	0.9	3.1	3.6	K	3.9	3.0	4.2	5.1

Table S3. Raman peak linewidth (cm^{-1}) of few-layer CrPS₄ samples that were recorded with 2.41-eV excitation at 293 K in our work and comparison with a previous report.

References

- S. N. Neal, K. R. O'Neal, A. V Haglund, D. G. Mandrus, H. A. Bechtel, G. L. Carr, K. Haule, D. Vanderbilt, H.-S. Kim and J. L. Musfeldt, *2D Mater.*, 2021, 8, 035020.
- J. Lee, T. Y. Ko, J. H. Kim, H. Bark, B. Kang, S.-G. Jung, T. Park, Z. Lee, S. Ryu and C. Lee, *ACS Nano*, 2017, **11**, 10935–10944.