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S1. Principal Component Analysis (PCA) of Experiment Data  

 

 
 
Figure S1. The PCA results under the conditions of VDS = -60V, VGS = -60 to -10V by 1V. The analysis 

is based on all temperature conditions (200 to 300K by 20K), encompassing all data points of the ID-
VGS curves. 
 
The PCA was conducted to evaluate the similarity between TCAD simulation data and 
experimental data. For a fair comparison, a dataset at VGS from -60 to -10V by 1V (51 points) 
was taken from both TCAD and experimental data across all temperature conditions from 200 
to 300K by 20K and at a single VDS condition of -60V. In Figure S1, each point (open circle 
and cross symbol) represents an ID-VGS-VDS data point, where a total of 51 points along PCA1 
constructing an ID-VGS curve. In the simulation data case, under the same conditions, 100 ID-
VGS curves exist for each temperature condition. 

On the PCA1 axis, there was small difference between the simulation and experimental 
data, indicating a high degree of similarity in terms of VGS. In detail, the differences in the x-
values of the simulation (x̅) and experimental data (𝑎̅) on the PCA1 axis were in average 0.19. 
This value represents the average difference in x-coordinate values at each VGS, with the 
average x-coordinate values for the 100 data points used for the simulation data. The detailed 
formula is as follows, where n = (the number of data points along PCA1 axis) = 51:  
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This value is smaller than the differences in PCA2 axis. On the PCA2 axis, the differences 
were negligible, which were on the order of 10-5. The difference on the PCA2 was more 
pronounced at higher VGS values (negative region on the PCA1 axis) due to larger ID at higher 
VGS. 

 



S2. Effect of Optimizer Algorithm 
 
In deep learning, optimizers are algorithms that adjust the model’s parameters during training 
to minimize a loss function. Thereby, a correct choice of an optimizer is important to build an 
accurate model. Among various optimizers, the RMSprop (root mean square propagation), 
first proposed by Hinton in the Coursera course, is a gradient-based optimization algorithm 
[S1]. It stores only a certain number of past gradient information instead of keeping track of all 
previous gradients. To reduce the influence of gradient information, it uses the decaying 
average of squared gradients [S2]. The update formula for RMSprop is as follows: 
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On the other hand, Adam, which is the one of the most used optimizers, is a stochastic gradient 
descent method that is based on adaptive estimation of first order and second order moments 
[S3]. The Adam optimizer combines the advantages of momentum and RMSprop optimizers. 
Thereby, it enhances both the direction and magnitude of learning [S4]. The formula for Adam 
is as follows: 
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where β1 represents the exponential moving average of momentum, and β2 represents the 
exponential moving average of RMSprop. m̂ and ĝ are bias-corrected values to prevent mt 
and gt from being initialized as 0 in the beginning of training. ε is a small value added in the 
denominator to prevent division by zero. η denotes the learning rate. 

As shown in Fig. S2 (a-d), we observed good performance in terms of accuracy and loss 
evaluation for both optimizer algorithms. In the meantime, for Adam optimizer, we noticed that 
the non-linear ID − VGS curves shape near and above threshold region (VGS = -20V to 5V) was 
not accurately modelled. By changing the optimizer to RMSprop, we improved model accuracy 
(Fig. S2 (a) v.s. Fig. S2 (b)) without a significant difference in loss values or the epoch-loss 
graph (Fig. S2 (c) and (d)). Thereby, we opted for an optimization algorithm such as RMSprop 
that excludes momentum for further experiment. 

 

 
Figure S2. Predict and test results by changing optimizer algorithm. Predict and test ID –VGS curves 

using (a) RMSprop and (b) Adam optimizer. The epoch-loss graph using (c) Adam and (d) RMSprop 
optimizer. 



S3. The number of epochs and overfitting problem 
 
To determine the optimal epoch for our model, with a focus on mitigating overfitting, we 
systematically conducted experiments by comparing the MSE loss of train and test data at 
various epochs (Fig. S3). A set of experiments had been conducted for 100 sets for transfer 
learning. The trends could be generalized among base learning and transfer learning in 
temperature and drain voltage domain. At epoch 100, it became apparent that the learning 
process was insufficiently progressed, as evidenced by relatively higher training and test loss 
values compared to epochs 200 and 500. Regarding epochs 200 and 500, both exhibited low 
test loss values accompanied by appropriately aligned training loss values. However, the 
epoch 200 configuration is the most suitable epoch for our model, since the epoch 200 
configuration demonstrated not only a smaller discrepancy between training and test loss but 
also superior temporal efficiency. Furthermore, in the pursuit of identifying an optimal learning 
rate, we executed experiments with 1000 iterations. Although the training loss reached 
remarkably low values (0.009, 0.006, and 0.001, respectively for base learning and transfer 
learning in temperature and drain voltage domain), the test loss showed a comparatively 
higher magnitude, indicating a potential susceptibility to overfitting beyond 1000 iterations. In 
summary, by setting epoch 200 for the model configuration with the early stopping option and 
maintaining the minimal difference between training and test loss, we guaranteed that the 
results are free from overfitting.  

 
Figure S3. The MSE loss of train and test data with respect to the number of epochs in (a) base 

learning, and in transfer learning in (b) temperature and (c) VDS domain. The MSE loss value of 1000 
epoch is out of y-axis range. 



S3. Effect of data scarcity on transfer learning  
 
We conducted transfer learning to assess the performance of our model more accurately by 
training it on varying amounts of target data. The results on transfer learning on drain voltage 
and temperature domain are summarized in figure S4. For the drain voltage domain (Fig. 
S4(a)), the initial attempt with 100 sets demonstrated excellent evaluation metrics, showing 
an MSE loss of 0.0226 and an R-squared of 0.995. Through fine-tuning with 50 sets, 20 sets, 
and 10 sets, the model consistently exhibited similar loss values and R-squared to the initial 
attempt, thus validating the superiority of our transfer learning model. Notably, a more abrupt 
degradation in the Mean Absolute Percentage Error (MAPE) was observed from 10 sets 
onwards, suggesting that 20 sets could be the most appropriate number of data samples. For 
the temperature domain (Fig. S4(b)), the initial attempt with 100 sets provided MSE loss of 
0.0318 and R-squared of 0.998. Fine-tuning with 50 sets, 20 sets, and 10 sets, the model 
showed a similar degradation pattern to that in the drain voltage domain with a pronounced 
increase of the MAPE from 10 sets onwards. The values of the figure-of-merits are 
summarized in Table S1 and S2. 
 

 
 

Figure S4. The effect of the number of data samples on the accuracy of the neural compact model 

represented by means of MSE (in red), R-squared (in pink) and MAPE (in green): for transfer 

learning in (a) the temperature domain, and (b) in the drain voltage domain. 

 



To investigate the accuracy of our model, we analyzed the current-voltage plots, i.e. 
the transfer curve ID-VGS (in both linear and semi-logarithmic scale) as well as the first and 
second derivative of the transfer curve (see Fig. S5-S13). For the visualization purpose, 
representative conditions were chosen: VDS = -60 and -5 V for transfer learning in temperature 
domain and 300 and 200K for transfer learning VDS domain. The first and second derivative 
plots confirm that out model successfully models the current-voltage characteristics 
manifested by the complex Gaussian mobility model. The degradation becomes noticeable at 
low temperature and high VDS conditions in fine-tuning with 10 sets in the prediction of the 
unseen data (Fig. S9(e, g)). 

These experimental results show that our model's excellence can be established with 
a reduced number of required data sets, presenting a time and cost advantage. The findings 
highlight the potential of minimizing the demanded data quantity for achieving optimal model 
performance, thereby offering significant advantages in terms of time and cost efficiency. 

 
 

 
Figure S5. ID − VGS characteristics saturation (VDS = -60V) regime in linear and semilog scale obtained 

by transfer learning of 100 sets (a) and (b), 50 sets (c) and (d), 20 sets (e) and (f), and 10 sets (g) and 
(h). Result of transfer learning: Seen-Prediction data (red filled circle), Seen-Test data (blue open-circle), 
Unseen-Prediction data (blue filled circle), and Unseen-Test data (red open circle). The temperature 
ranges from 300 to 200K in decrements of 20K, where the seen data are 300, 260, and 220K while the 
unseen data are 280, 240, and 200K. 
 

 

Figure S6. First and second derivative of ID−VGS characteristics under saturation regime (VDS = -60V) 

obtained by transfer learning of 100 sets (a) and (b), 50 sets (c) and (d), 20 sets (e) and (f), and 10 sets 
(g) and (h). 
 



 

Figure S7. ID−VGS characteristics under linear regime (VDS = -5V) in linear and semilog scale obtained 

by transfer learning of 100 sets (a) and (b), 50 sets (c) and (d), 20 sets (e) and (f), and 10 sets (g) and 
(h): Seen-Prediction data (red filled circle), Seen-Test data (blue open-circle), Unseen-Prediction data 
(blue filled circle), and Unseen-Test data (red open circle). The temperature ranges from 300 to 200K 
in decrements of 20K, where the seen data are 300, 260, and 220K while the unseen data are 280, 240, 
and 200K. 
 

 

Figure S8. First and second derivative of ID−VGS characteristics under linear regime (VDS = -5V) 

obtained by transfer learning of 100 sets (a) and (b), 50 sets (c) and (d), 20 sets (e) and (f), and 10 sets 
(g) and (h). 
 
 
 



 
Figure S9. Degradation of accuracy when the data is scarce for the transfer learning in temperature 

domain. ID−VGS characteristics under saturation (VDS = -60V) and linear (VDS = -5V) regime: (a) and (b) 
are for 20 sets at VDS = -60V, (c) and (d) are for 20 sets at VDS = -5V, (e) and (f) are for 10 sets at VDS = 
-60V (g) and (h) are for 10 sets at VDS = -5V. Only data for 200K are shown. 

 
 

Table S1. Time experiment result of each data samples and MSE loss, R squared and MAPE (percent, 

of the on region). Transfer learning in the temperature domain. 
 

 100 SETS 50 SETS 20 SETS 10 SETS 

PRE-TRAIN TIME 10h 27m 52s 10h 27m 52s 10h 27m 52s 10h 27m 52s 

FINE-TUNE TIME 5h 31m 22s 3h 08m 51s 2h 48m 17s 2h 14m 43s 

TOTAL TIME 5h 31m 22s 3h 08m 51s 2h 48m 17s 2h 14m 43s 

MSE LOSS 0.0226 0.0551 0.102 0.109 

R-SQUARED 0.995 0.988 0.912 0.910 

MAPE (%) 4.32 5.08 12.7 23.8 

 
 



  
Figure S10. ID − VGS characteristics under linear (Temperature = 300K) in linear and semilog scale 

obtained by transfer learning of 100 sets (a) and (b), 50 sets (c) and (d), 20 sets (e) and (f), and 10 sets 
(g) and (h): Seen-Prediction data (red filled circle), Seen-Test data (blue open-circle), Unseen-
Prediction data (blue filled circle), and Unseen-Test data (red open circle). The VDS conditions of the 
data range from -60V to 15V in decrements of 10V. For transfer learning, the (VDS conditions of the seen 
data are -60V, -40V, -20V and 0V. And the Unseen data are -50V, -30V, -10V, 5V and 15V. 

 

 
Figure S11. First and second derivative of ID−VGS characteristics under linear regime (Temperature = 

300K) obtained by transfer learning of 100 sets (a) and (b), 50 sets (c) and (d), 20 sets (e) and (f), and 
10 sets (g) and (h). 

  



 
Figure S12. ID − VGS characteristics saturation (Temperature = 200K) in linear and semilog scale 

obtained by transfer learning of 100 sets (a) and (b), 50 sets (c) and (d), 20 sets (e) and (f), and 10 sets 
(g) and (h): Seen-Prediction data (red filled circle), Seen-Test data (blue open-circle), Unseen-
Prediction data (blue filled circle), and Unseen-Test data (red open circle). The VDS conditions of the 
data range from -60V to 15V in decrements of 10V. For transfer learning, the (VDS conditions of the seen 
data are -60V, -40V, -20V and 0V. And the Unseen data are -50V, -30V, -10V, 5V and 15V. 
 

 
Figure S13. First and second derivative of ID−VGS characteristics under linear regime (Temp = 200K) 

obtained by transfer learning of 100 sets (a) and (b), 50 sets (c) and (d), 20 sets (e) and (f), and 10 sets 
(g) and (h). 

  



Table S2. Time experiment result of each data samples and MSE loss, R squared and MAPE (percent, 

of the on region). Transfer learning in the drain voltage domain. 

 

 100 SETS 50 SETS 20 SETS 10 SETS 

PRE-TRAIN TIME 12h 11m 13s 12h 11m 13s 12h 11m 13s 12h 11m 13s 

FINE-TUNE TIME 7h 24m 56s 5h 08m 07s 3h 18m 46s 2h 48m 14s 

TOTAL TIME 7h 24m 56s 5h 08m 07s 3h 18m 46s 2h 48m 14s 

MSE LOSS 0.0318 0.0713 0.112 0.132 

R-SQUARED 0.998 0.971 0.915 0.901 

MAPE (%) 7.28 11.16 15.9 28.7 
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