SUPPORTING INFORMATION

Syste	ms	Т	Temperature (K)			Mobility	(cm ² V ⁻¹ s ⁻¹)	
						<i>p</i> − type	ⁿ – type	
	0		20			.		-

Emergence of promising n – type thermoelectric material through conductive network and strong phonon softening

Jipin P M,¹ Tanu Choudhary,¹ Raju K Biswas *,¹

¹Department of Physics, Faculty of Mathematical and Physical Sciences M S Ramaiah University of Applied Sciences, Bengaluru 560058, India, *rajukumar1718@gmail.com

Table S1. Calculated lattice parameters (a=b), bond length (d), bond angle and band gap of HfSe₂, Janus HfSeS and HfSeS_{0.5}Te_{0.5} monolayers.

Systems	Lattice constant, a=b (Å)	Bond length, d (Å)	Bond angle (Degree)	Band gap (eV)
HfSe ₂	3.76 ^{24,51}	2.68 (Hf – Se) ^{24,51}	81.45° (Hf – Se – Hf)	0.67 ^{24,52}
HfSeS	3.70	2.68 (Hf – Se) 2.54 (Hf – S)	87.45° (Hf – Se – Hf) 93.24° (Hf – S – Hf)	0.88
HfSeS _{0.5} Te _{0.5}	7.62	2.68 (Hf – Se) 2.57 (Hf – S) 2.90 (Hf – Te)	88.01° (Hf – Se – Hf) 93.19° (Hf – S – Hf) 83.78° (Hf – Te – Hf)	0.11

	300	1252.50	395.87
	450	835.00	263.91
	600	626.25	197.93
HfSe ₂	750	501.00	158.34
	900	417.50	131.95
	1050	357.85	113 10
Systems	Temperzogre (K)	Szębeck coe	fficien 9 8µK/K)
		20	20
	300	143-1 8.pe	¹¹ 894ype
	450	2878.68	596.47
	300	2169001	4402235
HfSeS	450	176297620	3 653 88
	900	145319634	298323
HfSe ₂	1705500	124309972	2 362 63
	192000	1037399.50	2 29 067
	1050	287	239
	1300	892759.83	301349.65
	450	5982.56	2023.10
	600	4486.91	1517.32
HfSeS _{0.5} Te _{0.5}	750	3589.53	1213.86
	900	2991.28	1011.55
	1050	2563.95	867.04
	1200	2243.45	758.66

Table	S2.	Calculated	carrier	mobility	for	p	and	n _	type	HfSe ₂ ,	Janus	HfSeS	and
HfSeS ₀).5Te	0.5 monolaye	ers at dif	iferent ten	nper	atı	ures.						

	300	1386	1372		
	450	921	894		
Systems HfSeS	Temperature (K)	$\frac{681}{539} \kappa_{l} (W/mK) \frac{647}{496}$			
	900	440	403		
	3090	372 1.6	5 336		
	4500	324 1.2	9 280		
	600	1.0	3		
HtSe ₂	7300	2773 0.8	5 2920		
	2440	2058 0.72	2 2016		
	1050	1596 0.62	2 1554		
HfSoS. To	1200	1300 0.5	4 1260		
1113030.5100.5	900	1302	1200		
	3090	973 1.9	2 959		
	4500	876 1.5	8 850		
	600	1.2	9		
HtSeS	/50	1.0	1		
	900	0.9	1		
	1050	0.7	9		
	1200	0.6	9		
	1200	0.0			
	300	1.0	7		
	450	0.8	7		
	600	0.7	0		
HfSeS0 5Te0 5	750	0.5	8		
	900	0.4	9		

Table S3. Calculated Seebeck coefficient values of p and n – type HfSe₂, Janus HfSeS and HfSeS_{0.5}Te_{0.5} monolayers at different temperatures.

1050	0.42
1200	0.37

Table S4. Calculated lattice thermal conductivity $\binom{\kappa_l}{}$ values for HfSe₂, Janus HfSeS and HfSeS_{0.5}Te_{0.5} monolayers at different temperatures.

Fig. S1 (a) Phonon dispersion bands along $\Gamma - M - K - \Gamma$ direction in the Brillouin zone and (b) Eigen vectors for HfSe₂ monolayer.

Fig. S2 (a) Projected density of states and (b) crystal orbital Hamilton population (COHP) plot as a function of energy (E) for HfSe₂ monolayer.

Fig. S3 Phonon density of states for (a) $HfSe_2$, (b) Janus HfSeS and (c) $HfSeS_{0.5}Te_{0.5}$ monolayers, respectively.

Fig. S4 Electronic band structure calculated along the high symmetry points $K - \Gamma - M - K$ using density functional theory (DFT) within PBE functional for (a) HfSe₂, (b) Janus HfSeS and (c) HfSeS_{0.5}Te_{0.5} monolayers, respectively.

Fig. S5 Phonon scattering rate as a function of phonon frequency for (a) $HfSe_2$, (b) Janus HfSeS and (c) $HfSeS_{0.5}Te_{0.5}$ monolayers, respectively at 300 K. Red and blue colour corresponds to acoustic and optical phonons, respectively.