Supplementary Information

Indium Turns Tellurium into Ovonic Threshold Switching Selector by Stabilizing Amorphous Network

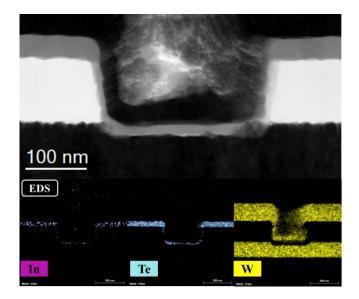
Huan Wang, ^{a, #} Rongchuan Gu, ^{a, #} Xianliang Mai, ^a Hengyi Hu, ^a Meng Xu, ^c Hao Tong, ^{ab} Zhongrui Wang, ^c Xiangshui Miao, ^{ab} and Ming Xu, ^{ab, *}

Huan Wang,^{a, #} Rongchuan Gu,^{a, #} Xianliang Mai,^a Hengyi Hu,^a Meng Xu,^c Hao Tong,^{a,b} Zhongrui Wang,^c Xiangshui Miao,^{a,b} and Ming Xu,^{a,b,*}

^aWuhan National Laboratory for Optoelectronics, School of Integrated Circuits,

Huazhong University of Science and Technology, Wuhan 430074, China

^bHubei Yangtze Memory Laboratories, Wuhan, 430205, China


^cDepartment of Electrical and Electronic Engineering, the University of Hong Kong,

Hong Kong, China

*Huan Wang and Rongchuan Gu contributed equally to the work.

*E-mail: mxu@hust.edu.cn (M.X.)

Figures

Fig. S1. Cross-sectional TEM image of the fabricated InTe₉ OTS device, with EDS mapping of In, Te, and W.

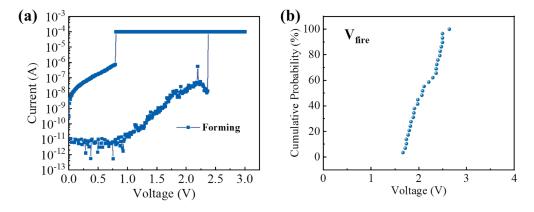


Fig. S2. (a) DC I-V sweep of the first-fire operation with a 100 μ A compliance current. (b) The distribution of the first-fire voltage (V_{ff}), centered around 2.2 V.

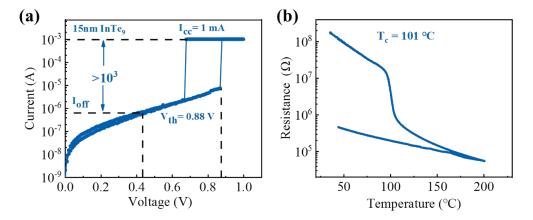
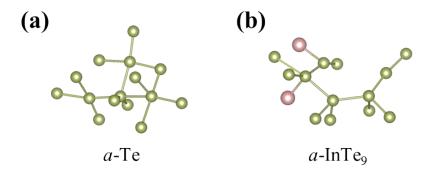



Fig. S3. (a) DC I-V sweep of the 15 nm-thick InTe₉ device, showing V_{th} and I_{off} of 0.88 V and 0.5 μ A, respectively. (b) The R-T relation of InTe₉ film, demonstrating that the crystallization temperature is ~100°C $_{\circ}$

Fig. S4. MGS projected to the real space. (a-b) The over-coordinated Te atoms in a-Te and a-InTe₉, respectively.

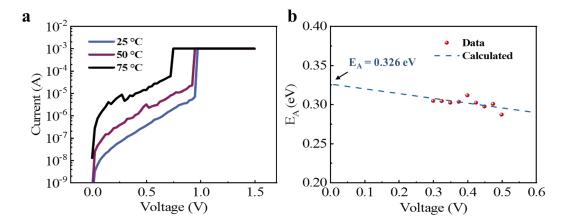


Fig. S5. (a) I-V-T measurement of OTS devices with a 1 mA compliance current. As the temperature increases, I_{off} and V_{th} decrease. (b) The voltage dependence of the activation energy for conduction (E_A).