Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supporting Information for

Optimization of indirect method for electrocaloric effect in BT-based ceramics validated through the Rayleigh relationship and direct method

Kui Chen,¹ Jian Ma,² Bo Wu, ² Peng Zhao,^{*3} Jingjing Chen,¹ Chengtao Yang^{*1} and

Bin Tang^{*1}

¹National Engineering Center of Electromagnetic Radiation Control Materials,

University of Electronic Science and Technology of China, Chengdu 611731, China;

State Key Laboratory of Electronic Thin Films and Integrated Devices, School of

Electronic Science and Engineering, University of Electronic Science and Technology

of China, Chengdu 611731.

²Physics department, Southwest Minzu University, Chengdu 610041, P. R. China.

³College of Electronic Information and Optical Engineering, Taiyuan University of

Technology, Taiyuan, Shanxi, 030024, China

*Corresponding author. Email: itceozp@126.com, ctyang@uestc.edu.cn and tangbin@uestc.edu.cn.

Fig. S1 (a) The room temperature XRD patterns corresponding to BSTH, BSCTH, BCTH, SCC, and interfaces. (b) The room temperature XRD patterns correspond to enlarged patterns with $2\theta = 42 - 47$ ° for BSTH, BSCTH, BCTH, SCC, and interfaces.

Fig. S2 The room temperature Rietveld fitted XRD patterns corresponding amplified views for (a) BSTH, (b)BSCTH and (c)BCTH.

Table S1: Lattice parameters and refined structure parameters of BSTH, BSCTH and BCTH ceramics.

Sample	Space group	a (Å)	b (Å)	c (Å)	Alpha(°)	Sig	Rwp (%)
BSTH	R3m(39.9%)	4.0100	4.0100	4.0100	89.8079		7.645
	Amm2(40.1)	4.0036	5.6640	5.7130	90	1.65	
	P4mm(20.0%)	4.0053	4.0053	4.0111	90		
BSCTH	R3m(49.8%)	4.0083	4.0083	4.0083	89.9944		8.056
	Amm2(39.7%)	3.9912	5.6622	5.7127	90	1.78	
	P4mm(10.5%)	4.0052	4.0052	4.0100	90		
встн	Amm2(83.5%)	4.0014	4.0014	4.0020	90	1 700	8.359
	P4mm(16.5%)	3.9997	5.6733	5.6903	90	1./00	

Fig. S3 (a) FE-SEM profiles and (b) corresponding EDS line scan for SCC sample.

Fig. S4 Temperature dependence of ε_r at different frequency of (a) BSTH, (b) BSCTH, (c) BCTH, and (d) SCC.

Fig. S5 (a) DSC heat flow results at various temperatures under E = 20 kV/cm for SCC. Temperature dependence of *P*-*E* loops for (b) BSTH, (c) BSCTH, and (d) BCTH. The insetes in (b)-(d) are the temperature dependence of polarization (P). Temperature dependence of ΔT for (e) BSTH, (f) BSCTH, and (g) BCTH.

Material	T(K)	E (kV/cm)	$\Delta T(\mathbf{K})$	Ref.
$Pb_{0.99}Nb_{0.02}(Zr_{0.85}Sn_{0.13}Ti_{0.02})O_3$	323	139	5.5	1
$Pb_{0.97}La_{0.02}(Zr_{0.75}Sn_{0.16}Ti_{0.09})O_{3}$	305	80	3.8	1
PbZrO ₃	508	400	11.4	2
$PbZr_{0.95}Ti_{0.05}O_3$	499	480	12	3
0.93PMN-0.07PT	298	723	13.4	4
0.9PMN-0.1PT	348	895	5	5
0.68PMN-0.32PT	419	600	9	6
SCC	353.15	50	1.198	This work

Table S2: Comparison of EC properties of SCC samples and thin film materials.

REFERENCES

- 1. X. Hao and J. Zhai, Applied Physics Letters, 2014, 104.
- 2. J. Parui and S. B. Krupanidhi, *physica status solidi (RRL) Rapid Research Letters*, 2008, **2**, 230-232.
- 3. A. S. Mischenko, Q. Zhang, J. F. Scott, R. W. Whatmore and N. D. Mathur, *Science*, 2006, **311**, 1270-1271.
- 4. T. M. Correia, J. S. Young, R. W. Whatmore, J. F. Scott, N. D. Mathur and Q. Zhang, *Applied Physics Letters*, 2009, **95**.
- 5. A. S. Mischenko, Q. Zhang, R. W. Whatmore, J. F. Scott and N. D. Mathur, *Applied Physics Letters*, 2006, **89**.
- 6. Z. Feng, D. Shi, R. Zeng and S. Dou, Thin Solid Films, 2011, 519, 5433-5436.