An adhesive, low swelling and conductive tri-network hydrogel for wearable electronic devices

Mengyuan Hu^{‡a,b}, Longhai Qiu^{c,#}, Yuliang Huang^c, Donghui Wang^{a,*},

Jiongliang Li^d, Chunyong Liang^b, Gen Wu^{e,*}, Feng Peng^{d,*}

^a Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300130, China.

^b School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China

 ^c 3Department of Traumatology and Orthopaedic Surgery, Institute of Orthopaedics, Huizhou Central People's Hospital, Huizhou, 516001, China

^d Medical Research Institute, Department of Orthopedics, Guangdong Provincial

People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510080, China

^e Department of Orthopaedics, The Fifth Affiliated Hospital, Southerm Medical University, Guangzhou, 510009, China

* Correspondence: pengfeng@gdph.org.cn.

Figure S1. A) EDS elemental analysis of TN hydrogels. B-C) EDX Mapping Analysis of TN Hydrogels.