Supporting information

Ambipolar charge-trapping in self-assembled nanostructures of supramolecular miktoarm star-shaped copolymer with a zinc phthalocyanine core

Xinhao Zhong,^{a,b} Debdatta Panigrahi,^c Ryoma Hayakawa,^c Yutaka Wakayama,^{*c} Koji Harano,^d Masayuki Takeuchi,*a,b and Junko Aimi*a

^a Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan

 b Department of Materials Science and Engineering, Faculty of Pure & Applied Sciences,</sup> University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan

^c Research Center for Materials Nanoarchitectonics (MANA), NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

^d Center for Basic Research on Materials, NIMS, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan

^{a)} Number-average molecular weight and polydispersity determined by GPC analysis. ^{b)} Degree of polymerization (DP) estimated for each arm.

Figure S1. AFM height image of a polymer blend film of PS₄ and pyPMMA.

Figure S2. Bright-field TEM image of ZnPcPS4/pyPMMA film.

Figure S3. STEM-EDS elemental mapping image for carbon (a), oxygen (b), and Zn (c) of a polymer film of ZnPcPS4/pyPMMA.

Memory layer	Initial V_{th} (V)	$I_{\text{on}}/I_{\text{off}}$ (A)	Mobility $\text{(cm}^2 \text{ V}^{-1} \text{ s}^{-1})$	Hole- trapping $V_{\text{th}(-)}^{\text{a}}$ (V)	Electron- trapping $V_{\text{th(+)}}^{\text{b}}$ (V)	Memory window (V)	Memory ratio
ZnPcPS ₄ /pyPMMA	0.57	$~10^8$	0.31	-24.80	22.43	47.23	\sim 10 ⁷
ZnPePS ₄	-2.05	$\sim 10^7$	0.26	-33.54	15.07	48.61	\sim 10 ⁶
pyPMMA	-12.15	$\sim 10^7$	2.96	-17.42	-1.71	15.71	$\sim 10^7$

Table S2. Device performances of C8-BTBT-based OFET memory using polymer dielectrics

^{a)} The threshold voltages $V_{th(-)}$ estimated after applying $V_g = -60$ V for 1 s. ^{b)} The threshold voltages $V_{\text{th(+)}}$ estimated after applying V_g = +60 V under UV light for 5 s.

Figure S4. Output characteristics for OFET devices with ZnPcPS4/pyPMMA (a), ZnPcPS4 (b), and pyPMMA (c) layers.

Figure S5. XRD profiles of the C8-BTBT films on ZnPcPS4 (green line) and ZnPcPS4/pyPMMA (blue line).

Figure S6. Transfer characteristics of OFET memory device with a polymer layer of ZnPcPS₄ at $V_d = -50$ V. Transfer curves were monitored at the initial state (gray), after electric writing (red), after photo-erasing (purple), and after photo-assisted writing (blue) operations.

Figure S7. Transfer characteristics of OFET memory device with a polymer layer of pyPMMA at $V_d = -50$ V. Transfer curves were monitored at the initial state (gray), after electric writing (red), after photo-erasing (purple), and after photo-assisted writing (blue) operations.

Figure S8. Absorption spectra of C8-BTBT film (purple line) and ZnPcPS4/pyPMMA blend film (blue line).

Figure S9. Transfer characteristics of OFET memory device with a polymer layer of ZnPcPS₄ at $V_d = -50$ V by LED light irradiation at (a) 365 nm and (b) 730 nm.

The transfer curve at the initial state (gray dashed line) was shifted after applying $V_g = -60$ V for 1 s (red line). Subsequent irradiation of 365 nm LED light for 5 s shifted the transfer curve to the initial state (purple line Figure S9a). Simultaneous exposure to $V_g = +60$ V and 365 nm light for 5 s shifted the transfer curve to the positive direction (blue line Figure S9a). While irradiation of 730 nm LED light for 5 s (orange line Figure S9b) and simultaneous exposure to $V_g = +60$ V and 730 nm light for 5 s (green line Figure S9b) resulted in only slight positive shift.

Figure S10. (a) Transfer characteristics of the OFET memory device with ZnPcPS₄/pyPMMA memory layer at $V_d = -50$ V after applying various positive V_g under the UV light irradiation for 5 s. (b) Drain current read at $V_g = +5$ V and $V_d = -50$ V after applying various positive V_g with UV light for 5 s.

Figure S11. Retention time of I_{ds} monitored at $V_g = 0$ V and $V_d = -10$ V after photo-assisted programming of OFET memory devices with pyPMMA (red circle), ZnPcPS4/pyPMMA (blue circle) and ZnPcPS4 (green circle) layers.

Figure S12. Surface potential images after applying $V_{tip} = +10$ V onto ZnPcPS₄ (a) and pyPMMA (b). Surface potential images after applying $V_{\text{tip}} = -10 \text{ V}$ of ZnPcPS₄ (c) and pyPMMA (d).

Figure S13. Surface potential image of ZnPcPS4/pyPMMA film at the initial state.