A novel Mn²⁺ doped ScTaO₄ dual-emitting phosphor for high

temperature optical thermometry

Jingshan Hou ^{a, *}, Zhiyu Qin ^a, Jianghua Wu ^a, Tong Li ^a, Langping Dong ^a, Ganghua Zhang ^a, Guoying Zhao ^a, Yufeng Liu ^a, Haijie Chen ^b and Yongzheng Fang ^{a, *}

a School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, China.

b State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.

Table S1. Crystallographic data, positions of all atoms and the occupancy for the $STO:0.002Mn^{2+}$ phosphor by Rietveld refinement.

	a = 4.8060 Å						
Cell parameters	<i>b</i> = 5.6723 Å, <i>c</i> = 5.1152 Å						
	$\alpha = \gamma = 90^{\circ}, \beta = 91.6^{\circ}$						
	$V = 139.39 \text{ Å}^3$						
Space group	P12/c1, monoclinic						
Reliability		D 50	N5.0/ D 4.5.0	2 4 202			
factors		$R_{wp} = 5.9$	$5 \% R_p = 4.5 \%$	$\gamma_0 \chi^2 = 4.293$			
Atoms	x	У	Ζ	$B_{\rm iso}/B_{\rm eq}{}^a$	$\mathrm{s.o.f}^b$		
Sc1	0.5	0.653	0.25	0.01442	0.998		
Sc2	-0.5	-0.653	-0.25	0.01442	0.998		
Mn1	0.5	0.653	0.25	0.01442	0.002		
Mn2	-0.5	-0.653	-0.25	0.01442	0.002		
Ta1	0	0.18192	0.25	0.00554	1		
Ta2	0	-0.18192	-0.25	0.00554	1		
O1	0.245969	0.173898	-0.08142	0.03694	1		

02	0.428979	-0.30484	0.43935	0.02188	1
03	-0.24597	-0.1739	0.081417	0.02598	1
O4	-0.22643	0.083607	-0.41481	0.02633	1
05	0.217765	0.451892	0.402127	0.02133	1

 ${}^{a}B_{iso}/B_{eq}$ refers to the general temperature factor. ${}^{b}s.o.f$ refers to the site occupation fraction.

Fig. S1 (a) XPS survey spectra of STO:0.002Mn²⁺, (b) HR-XPS core spectra of Ta 4f

orbital and (c) HR-XPS core spectra of Sc 2p orbital.

Fig. S2 Tanable–Sugano diagram of $3d^5$ electronic configuration of Mn^{2+} ions. Details calculation for the Dq and Dq/B for the STO: $0.002Mn^{2+}$: Four excitation bands

around at 27324.04cm⁻¹(366nm), 23530.82cm⁻¹(425nm), 22473.26cm⁻¹(445nm), and 21098.31cm⁻¹(474nm) are corresponding to the transitions of ${}^{6}A_{1}({}^{6}S) \rightarrow {}^{4}E({}^{4}D)$, ${}^{6}A_{1}({}^{6}S) \rightarrow {}^{4}T_{2}({}^{4}D)$, ${}^{6}A_{1}({}^{6}S) \rightarrow {}^{4}E, {}^{4}A_{1}({}^{4}G)$, and ${}^{6}A_{1}({}^{6}S) \rightarrow {}^{4}T_{2}({}^{4}G)$ of Mn²⁺ ions by utilizing the Tanabe–Sugano energy level diagram for the 3d⁵ configuration of Mn²⁺. The transitions of ${}^{4}E({}^{4}D) \rightarrow {}^{6}A_{1}({}^{6}S)$ and ${}^{4}E, {}^{4}A_{1}({}^{4}G) \rightarrow {}^{6}A_{1}({}^{6}S)$ are parity- and spin-forbidden. The ground state ${}^{6}S$ level is set to zero, the coordination of ${}^{4}G$ and ${}^{4}D$ energies of octahedron Mn²⁺ depends on the Racah parameter values of *B* and *C*, which can be calculated follow the equations:

⁶A₁ (⁶S) → ⁴E, ⁴A₁(⁴G) = 10B + 5C (S1)
⁶A₁ (⁶S) → ⁴E, (⁴D) = 17B + 5C (S1)

$$E$$
 ⁴E, ⁴A₁(⁴G) + E ⁴E, (⁴D) = 10Dq (S3)

where *B* and *C* are Racah parameters, *Dq* is the cubic-field splitting parameter. The *Dq* = 485 cm⁻¹, B = 693, C = 3109, *Dq*/B = 0.7.

Fig. S3 Decay curves of STO:*x*Mn²⁺ phosphors by monitoring the emission at 660

Fig. S4 Relationship between the intensity ratio I_{s0}/I_{s} of [TaO₆] groups and Mn²⁺

doping concentrations

Details for the energy transfer process: The relationship between the intensity ratio $I_{s0/}$, I_s of [TaO₆] groups and Mn²⁺ doping concentrations are shown in Fig. S4. Where I_s and I_{s0} represent the emission intensity of [TaO₆] groups with and without Mn²⁺ ions, respectively. As the doping Mn²⁺ ion concentration increase, the value of $I_{s0/}I_s$ for TaO₆ groups monotonically increases, which further suggests that there's an effective energy transfer path existing between [TaO₆] groups and Mn²⁺ ions. The energy transfer process from [TaO₆] groups to Mn²⁺ in STO:Mn²⁺ in STO should occurs via a multipolar interaction according to the Dexter's energy transfer expression and Reisfeld's approximation. The following relation can be given: S1,S2

$$\eta_0/\eta \propto C^{\alpha/3}$$
 (S4)

where η_0 and η represent emission quantum efficiencies of the host without and with Mn²⁺ ions, respectively; C is the concentration of Mn²⁺; and the $\alpha = 6$, 8, 10 corresponding to dipole-dipole, dipole-quadrupole and quadrupole-quadrupole

interaction, respectively. The value of η_0/η can be approximately estimated by the emission intensity ratio (I_{s0}/I_s) as follow: S1,S2

$$I_{s0}/I_s \propto C^{\alpha/3}$$
 (S5)

The dependence of I_{s0}/I_s for $C_{Mn^2} + \alpha^{\alpha/3}$ ($\alpha = 6, 8, 10$ respectively) are exhibited in Fig. S5. The linear fitting is found to give a best match when $\alpha = 6$, with a correlation coefficient R^2 =0.9177. Indicating that the dominant energy transfer mechanism from [TaO₆] groups to Mn²⁺ in STO is a dipole-dipole interaction.

Mn ²⁺ concentration	CIE coordinate (x, y)	
0.000	(0.222, 0.302)	
0.0005	(0.374, 0.329)	
0.001	(0.418, 0.306)	
0.002	(0.475, 0.307)	
0.003	(0.502, 0.305)	
0.005	(0.516, 0.303)	
0.007	(0.538, 0.303)	
0.009	(0.543, 0.305)	

Table S2 The CIE coordinates of STO: xMn^{2+} ($x = 0 \sim 0.009$) samples

 Table S3
 CIE chromaticity coordinates of STO:0.0005Mn²⁺ sample at various

temperatures

Temperature (K)	CIE coordinate (<i>x</i> , y)
298	(0.374, 0.329)
323	(0.367, 0.332)
348	(0.343, 0.331)
373	(0.330, 0.330)
398	(0.318, 0.329)
423	(0.310, 0.327)
448	(0.295, 0.325)
473	(0.279, 0.322)

523	(0.258, 0.310)

The temperature uncertainty δT (thermal resolution) could be calculated follow the equation:

$$\delta T = \frac{\frac{1}{S_r} \frac{\delta LIR}{LIR}}{(S6)}$$

where δLIR is the uncertainty in LIR, considering the uncertainty in the measurement $\underline{\delta LIR}$

of the influence intensity, \overline{LIR} can be calculated according to the equation:

$$\frac{\delta LIR}{LIR} = \sqrt{\left(\frac{\delta I_{host}}{I_{host}}\right)^2 + \left(\frac{\delta I_{Mn^2}}{I_{Mn^2}}\right)^2} \tag{S7}$$

For each transition, we can assume that:

$$\frac{\delta I_{host}}{I_{host}} = \frac{\delta I_{bl}}{(I)}$$
(S8)

Where δI_{bl} is the uncertainty determined by the fluctuations of the baseline readout, and $\langle I \rangle$ denotes the average intensity and evaluated over whole emission spectral region $(E_0 \le E \le E_1)$ by the equation:

$$(I) = \frac{\int_{E_0}^{E_1} I(E) dE}{E_1 - E_0}$$
(S9)

Combine above equation (S6-S9), the temperature δT could be calculated.

Fig. S6 (a) Absolute error at different temperature and (b) the repeatability of the optical fiber thermometry prototype.

Fig. S7 The actual application using a heating stage and measuring the temperature with the prototype at 323 K (a), 398 K (b), 423 K (c) and 473 K (d).

References

- 1 D. L. Dexter and J. H. Schulman, J. Chem. Phys., 1954, 22, 6: 1063-1070.
- 2 Blasse, G. Phys. Lett. A 1968, 28, 444–445.