NaB(OH)₃CH₃: A Deep-Ultraviolet Optical Crystal with Unprecedented Methyl-modification [B(OH)₃CH₃] Units

Chenhui Hu,^{a,b} Huimin Li,^a Jian Han,^{a,b,*} Xueling Hou,^{a,b} Zhihua Yang,^{a,b} and Shilie Pan^{a,b,*}

^a Research Center for Crystal Materials; State Key Laboratory of Functional Materials and Devices for Special Environmental Conditions; Xinjiang Key Laboratory of Functional Crystal Materials; Xinjiang Technical Institute of Physics and Chemistry, CAS, 40-1 South Beijing Road, Urumqi 830011, China.

^b Center of Materials Science and Optoelectronics Engineering,
 University of Chinese Academy of Sciences, Beijing 100049, China.

* Corresponding authors: hanjian@ms.xjb.ac.cn and slpan@ms.xjb.ac.cn.

EXPERIMENTAL METHODOLOGY

1. Synthesis.

Colorless and transparent NaB(OH)₃CH₃ crystals were readily grown from the solution through slow evaporation. The raw materials B(OH)₂CH₃, and NaOH at a molar ratio of 1:1 were placed in a 100 mL erlenmeyer flask wrapped in plastic wrap and mixed with a small amount of deionized water (20 mL). They were put in a water bath and heated to 70 °C for a week. With this process, the colorless crystals of NaB(OH)₃CH₃ were obtained. The polycrystalline powder sample was obtained directly from grinding the as-grown crystals, and its purity was checked by X-ray diffraction patterns.^[1]

2. Characterizations.

High-quality crystals were picked under an optical microscope (OM) and applied

for the measurements of single-crystal X-ray diffraction. The experiments were carried out at room temperature on a Bruker D8 Venture diffractometer with monochromatic Cu K α radiation (λ =1.54056 Å). The diffraction data were integrated using the SAINT program. Meanwhile, multiscan-type absorption corrections were performed using the SADABS program. To determine the space groups, the XPREP program in the SHELXTL package was used.^[2] The crystal structures of s2 $NaB(OH)_3CH_3$ were solved by the direct method, and refined using F^2 full matrix least squares. Then, the structures were checked by the PLATON program.^[3, 4]

UV-vis-NIR diffuse-reflectance spectroscopy data was recorded using a Shimadzu 3700DUV spectrophotometer in the wavelength range from 190-2600 nm at room temperature. The bandgap can be calculated as follows: $Eg(eV)=(h/k)\times(c/\lambda)$. (Planck's constant h approximately equal 6.6260693×10⁻³⁴ J·s; k=1.6×10⁻¹⁹ eV; c is the speed of light; λ is the wavelength) To facilitate the calculation: $Eg(eV)=1240/\lambda$ (nm).

The data of thermal behavior of NaB(OH)₃CH₃ was collected by NETZSCH STA 449C simultaneous analyzer instrument under flowing nitrogen gas and the sample and Al_2O_3 reference were put in closed platinum crucibles with a temperature from 40 to 600 °C at a heating rate of 10 °C/ min.

3. Calculations

The theoretical calculations of NaB(OH)₃CH₃ are performed using the plane wave density functional theory (DFT) package CASTEP.^[5, 6] The exchange-correlation functional was treated by the generalized gradient approximation (GGA) in the formulation of Perdew-Burke-Emzerhoff (PBE) functional, and core-valence interactions were described by norm-conserving pseudopotentials (NCP).^[7, 8] Because GGA usually ^{S3}

underestimates the bandgap owing to the discontinuity of exchangecorrelation energy, the HeydScuseria-Ernzerhof (HSE06) mixed function and PBE0 function implemented in PWmat code^[9-10] were chosen to provide more accurate bandgap values. Therefore, the bandgap difference between the GGA and experimental value was used as the operation of a scissor to calculate optical properties. The cutoff energy of the plane wave was set to 800 eV. Self-consistent field (SCF) calculations were performed with a convergence criterion of 5×10^{-7} eV/atom on the total energy. The k-point separation for each material was set as 0.04 Å⁻¹ in the Brillouin zone, resulting in the corresponding Monkhorst-Pack k-point meshes. The linear optical properties were obtained based on the dielectric function: $\varepsilon(\omega) = \varepsilon_1(\omega) + i\varepsilon_2(\omega)$. Where $\varepsilon_1(\omega)$ and $\varepsilon_2(\omega)$ are the real and imaginary parts of the dielectric function respectively. The imaginary part of the dielectric function ε_2 can be calculated based on the electronic structures and the real part is obtained by the Kramers-Kronig transformation, accordingly, the refractive indices and the birefringence (Δn) can be calculated. Finally, the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the [B(OH)₃CH₃] group were calculated using the Gaussian 09 package under the conditions of the 6-31G basis set.

Figure S1. The HOMO-LUMO GAP of NaB(OH)₃CH₃ crystal.

Figure S2. (a) and (b) NaB(OH)₃CH₃ single crystals under the polarizing microscope. (c) Extinction of the measurement of refractive index difference. (d), (e), and (f) Thickness of the selected crystal.

Figure S3. (a) The calculated electronic band structures of NaB(OH)₃CH₃.(b) The total and partial density of states of NaB(OH)₃CH₃.

Figure S4. The refractive index of NaB(OH)₃CH₃.

	Empirical formula	NaB(OH) ₃
	Temperature (K)	300(2)
	Wavelength (Å)	1.54178
	Crystal system	monoclinic
	Space group	$P2_1/n$
	Formula weight	99.86
	<i>a</i> (Å)	9.0897(2)
	<i>b</i> (Å)	5.60850(10
	<i>c</i> (Å)	9.6007(2)
	β (°)	115.5310(1
	Z, Volume (Å ³)	4,
	$ ho_{ m Calcd}~(m mg/m^3)$	1.502
	μ (/mm)	1.981
	<i>F</i> (000)	208
	R(int)	0.0631
	Goodness-of-fit on F^2	1.098
		$R_1 =$
	Final <i>R</i> indices	0.0266,
	$[F_{o}^{2}>2\sigma(F_{o}^{2})]^{a}$	$wR_2 =$
		0.0676
		$R_1 =$
	<i>R</i> indices (all data) ^a	0.0309,
		$wR_2 =$
		0.0698
	Largest diff. peak and	0.236/-
	hole (e·Å ⁻³)	0.181
^[a] $R_1 = \sum F_0 $	hole (e·Å ⁻³) - $ F_c /\sum F_o $ and $wR_2 = [\Sigma_{ab}]$	$\frac{0.181}{\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum wF_{o}^{4}]^{1/2}}$
$F_{\rm o}^{2} > 2\sigma(F_{\rm o}^{2}).$		

Table S1. Crystal data and structure refinements for NaB(OH)₃CH₃.

displacement parameters (Å^{2×10³}) for NaB(OH)₃CH₃. Ueq is defined as 1/3 of the trace of the orthogonalised U_{ij} tensor. $\frac{\overline{\text{Atom} \quad x \quad y \quad z \quad U(eq)}}{Na(1) \quad 6366(1) \quad 6489(1) \quad 6742(1) \quad 30(1)}$

Table S2. Fractional atomic Coordinates $(\times 10^4)$ and equivalent isotropic

Atom	X	У	Z	O(eq)
Na(1)	6366(1)	6489(1)	6742(1)	30(1)
B(1)	6959(2)	1255(3)	4804(2)	24(1)
C(1)	8169(2)	2761(3)	4303(2)	40(1)
O(1)	6326(1)	2737(2)	5684(1)	26(1)
O(2)	5488(1)	385(2)	3421(1)	30(1)
O(3)	7800(1)	-805(2)	5827(1)	31(1)
O(3)	/800(1)	-805(2)	5827(1)	31(1)

Table S3. Bond lengths for NaB(OH)₃CH₃.

Atom	Length/Å	
Na(1)-O(1)	2.3304(11)	
Na(1)-O(1)#3	2.5552(11)	
Na(1)-O(1)#1	2.5861(11)	
Na(1)-O(1)	2.3304(11)	
Na(1)-O(1)#3	2.5552(11)	
Na(1)-O(1)#1	2.5861(11)	
Na(1)-O(2)#1	2.3900(12)	
Na(1)-O(3)#3	2.4808(12)	
Na(1)-O(3)#4	2.3999(12)	
B(1)-O(1)	1.4677(19)	
B(1)-O(2)	1.5033(19)	
B(1)-O(3)	1.495(2)	
B(1)-C(1)	1.616(2)	
O(1)-H(4)	0.76(2)	
O(3)-H(6)	0.958(10)	
C(1)-H(2)	0.9600	
C(1)-H(3)	0.9600	
C(1)-H(1)	0.9600	
C(1)-H(2)	0.9600	
C(1)-H(3)	0.9600	
C(1)-H(1)	0.9600	

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1 #2 -x+3/2,y-1/2,-z+3/2 #3 -x+3/2,y+1/2,-z+3/2 s11

#4 x,y+1,z #5 x,y-1,z

Table S4. Bond angles for NaB(OH)₃CH₃.

Atom	Angle/°
O(1)-Na(1)-O(1)#3	121.39(4)
O(1)#3-Na(1)-	152.73(3)
O(1)#1	
O(1)-Na(1)-O(1)#1	85.88(4)
O(1)-Na(1)-O(2)#1	139.11(4)
O(1)-Na(1)-O(3)#3	83.26(4)
O(1)-Na(1)-O(3)#4	108.68(4)
O(2)#1-Na(1)-	56.71(3)
O(1)#1	
O(2)#1-Na(1)-	97.14(4)
O(1)#3	
O(2)#1-Na(1)-	89.50(4)
O(3)#4	
O(2)#1-Na(1)-	111.29(4)
O(3)#3	
O(3)#3-Na(1)-	56.04(3)
O(1)#3	
O(3)#3-Na(1)-	136.16(4)
O(1)#1	
O(3)#4-Na(1)-	80.33(4)
O(1)#3	
O(3)#4-Na(1)-	90.95(4)
O(1)#1	
O(3)#4-Na(1)-	132.72(3)

105.80(12)
106.03(11)
111.17(13)
111.52(12)
109.72(12)
112.27(13)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1 #2 -x+3/2,y-1/2,-z+3/2 #3 -x+3/2,y+1/2,-z+3/2 #4 x,y+1,z #5 x,y-1,z

Table S5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters ($x \ 10^3$) for NaB(OH)₃CH_{3.}

Atom	X	У	Z	U(eq)
H(1)	8503	1787	3669	60
H(2)	9111	3245	5209	60
H(3)	7611	4148	3733	60
H(4)	5800(20)	1960(30)	5940(20)	29(5)
H(5)	5772	-136	2776	44
H(6)	8530(30)	-	5490(30)	84(8)
		1590(40)		

REFERENCES

(1) Pizer, R.; Tihal, C. Equilibria and Reaction-Mechanism of the Complexation of Methylboronic Acid with Polyols. *Inorg. Chem.* **1992**, *31*, 3243-3247.

(2) Sheldrick, G. M. A Short History of SHELX. Acta Crystallogr. A2008, 64, 112-122.

(3) Haming, L.; Sheldrick, G. M. SADABS: A Program For Exploiting The Redundancy of Area-Detector X-Ray Data. *Acta Crystallogr. A* 1999, 55, No. 206.

(4) Spek, A. L. Single-Crystal Structure Validation with the Program PLATON. J. Appl. Crystallogr. 2003, 36, 7-13.

(5) Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I.;

Refson, K.; Payne, M. C. First Principles Methods Using CASTEP. Z. Kristallogr. - Cryst. Mater. 2005, 220, 567.

(6) Kohn, W. Nobel Lecture: Electronic Structure of Matterwave Functions and Density Functionals. *Rev. Mod. Phys.* **1999**, *71*, 1253.

(7) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, *77*, 3865.

(8) Rappe, A. M.; Rabe, K. M.; Kaxiras, E.; Joannopoulos, J. D.Optimized Pseudopotentials. *Phys. Rev. B* 1990, *41*, 1227.

(9) Heyd, J.; Scuseria, G. E.; Ernzerhof, M. Hybrid Functionals Based on ^{\$16}

a Screened Coulomb Potential. J. Chem. Phys. 2003, 118, 8207-8215.

(10) Jia, W. L.; Fu, J. Y.; Cao, Z. Y.; Wang, L.; Chi, X. B.; Gao, W. G.; Wang, L. W., Fast Plane Wave Density Functional Theory Molecular Dynamics Calculations on Multi-GPU Machines. J. Comput. Phys. **2013**, *251*, 102-115.

The explanation for alert level B found from the CHECKCIF report for NaB(OH)₃CH₃: Although the crystal data are good (*Rint* = 0.0631) and the structure solution parameters ($R_1 = 0.0266$, $wR_2 = 0.0698$, GOF = 1.098) are reasonable, there is no suitable receptor in the surrounding environment.