Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supporting Information for

Two-dimensional honeycomb-kagome V_2X_3 (X = O, S, Se) with half-

metallicity, high Curie temperature and large magnetic anisotropic

energy

Sai Ma,^{1,*} Xiangyan Bo, ^{1,*} Lei Fu,¹ Xiaoyu Liu, ¹ Suen Wang,¹ Mengxian Lan,¹ Shasha Li,¹ Tian Huang,^{1,†} Feng Li,^{1,†} and Yong Pu^{1,†}

¹School of Science & New Energy Technology Engineering Laboratory of Jiangsu Province, Nanjing University of Posts and Telecommunications (NJUPT), Nanjing 210046, China

Sai Ma and Xiangyan Bo contributed equally to this manuscript.

Corresponding Authors: lifeng@njupt.edu.cn; puyong@njupt.edu.cn

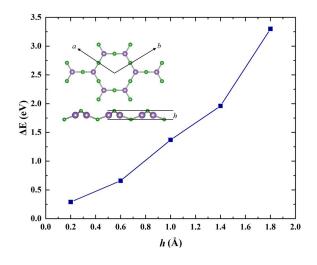
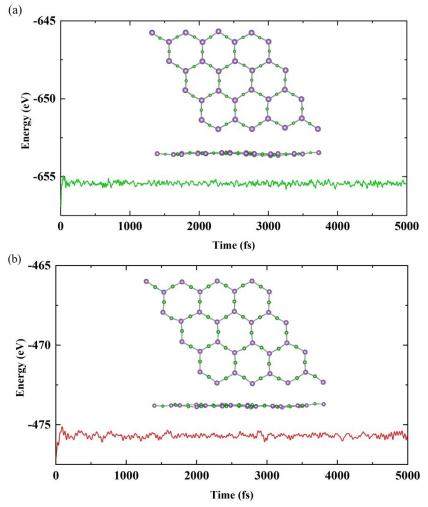



Figure S1: The variation of total energy difference, $\Delta E = E_{(Buckled)} - E_{(Planar)}$, as a function of buckled height h. The insets are buckled V₂O₃ lattice. It can be seen that the planar structure has the lowest energy and, hence, is most stable.

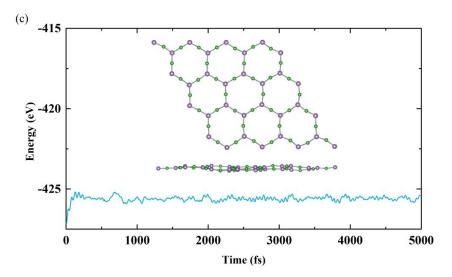
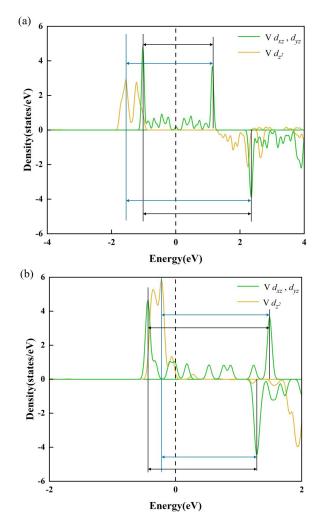



Figure S2: The evolution of total energy of the V_2X_3 (X = O, S, Se) monolayers as a function of time at 300 K.

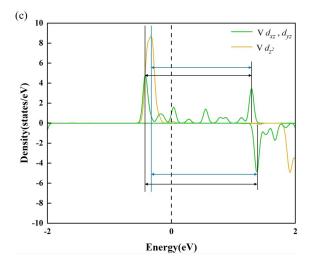


Figure S3: PDOS of V- d_{xz}/d_{yz} and V- d_z^2 orbitals of (a) V₂O₃, (b) V₂S₃, and (c) V₂Se₃.

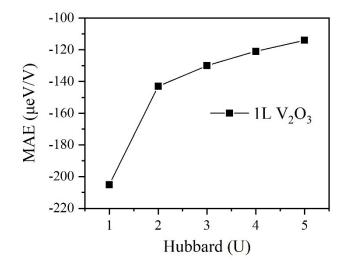


Figure S4. The energy difference between the FM state of monolayer V_2O_3 along the 001 and 100 directions as a function of the Hubbard *U* value.