Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Enhancement linear electrical properties and thermal stability of chromite perovskites through

entropy engineering

YunfeiWang^{a,b,‡}, Hao Sun^{a,d,‡}, Yang Zhou^c, RuifengWu^{a,d}, Yafei Liu^{a,d}, Lili Zhi^b, Aimin Chang^a, Bo Zhang^{a,*}

^aState Key Laboratory of Functional Materials and Devices for Special Environmental Conditions,

Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute

of Physics & Chemistry of CAS, Urumqi 830011, China

^bSchool of Physics and Materials Science, Changji University, Changji 831100, China

SOOK High Tech (JiangSu) Co., Ltd, Yangzhou 225600, China

^dUniversity of Chinese Academy of Sciences, Beijing 100049, China

[‡]These authors contributed equally to this work and should be considered co-first authors.

*Corresponding author: zhangbocas@ms.xjb.ac.cn (Bo Zhang)

Sample	Element concentration [at.%] and the ratio of A site element and Cr							Real composition	
	La	Nd	Sm	Gd	Y	Cr	A:Cr	Real composition	
LaCrO _{3-δ}	18.96	-	-	-	-	21.03	0.90:1	$La_{0.90}CrO_{3-\delta}$	
$(5RE_{0.2})CrO_{3-\delta}$	4.07	4.40	4.44	3.55	5.32	20.86	1:0.95	$La_{0.19}Nd_{0.20}Sm_{0.20}Gd_{0.16}Y_{0.24}Cr_{0.95}O_{3\text{-}\delta}$	

Table S1. The elemental composition of $LaCrO_{3-\delta}$ and $(5RE_{0.2})CrO_{3-\delta}$.

Compound	$R_1(\Omega)$	C_1 (F)	$R_{2}\left(\Omega ight)$	$C_2(\mathbf{F})$
$LaCrO_{3-\delta}$	274	1.690E-9	/	/
$(5RE_{0.2})CrO_{3-\delta}$	3931	7.163E-10	1897	1.133E-8

Table S2. Impedance spectrum fitting results for LaCrO_{3- δ} and (5RE_{0.2})CrO_{3- δ}.

Figure S1. XRD pattern and refinement results for $LaCrO_{3-\delta}$.

Figure S2. (a, b) SEM-EDS element mapping, and (c) atomic ratio distribution of $LaCrO_{3-\delta}$ and $(5RE_{0.2})CrO_{3-\delta}$ ceramic.

Figure S3. Geometric phase analysis plots and statistics of $(5RE_{0.2})CrO_{3-\delta}$ along the xx and yy directions.