Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supporting Information

NIR II responsive core–shell La₂O₂S:Er³⁺@ La₂O₂S nanoparticles towards 1.5

μm photodetection

Xinyao Dong^{1,2}, Na Zhou², Minfeng Tian¹, Yanan Ji^{2*}, Jingxuan Wang², Jianing Fan², Heyang Li³, Wen Xu², Ping Duan^{1*}, Xiumei Yin^{2*}

1 School of Science, Dalian Maritime University, Dalian, Liaoning, 116026, PR China.

2 School of Physics and Materials Engineering, Dalian Minzu University, 18 Liaohe West Road, Dalian, 116600, PR China.

3 University College London, Gower Street, London WC1E 6BT, UK.

* Corresponding authors: jiyn@dlnu.edu.cn (Yanan Ji); duanping@dlmu.edu.cn (Ping Duan); yinxiumei@dlnu.edu.cn (Xiumei Yin).

Fig. S1 The particle size distribution statistics results of core nanoparticles.

Fig. S2 The particle size distribution statistics results of core-shell nanoparticles.

Fig. S3 XRD patterns of the $La_2O_2S:xEr^{3+}$ (x = 0, 1, 2, 5, 10 mol%) nanoparticles.

Fig. S4 Decay profiles of ${}^{4}S_{3/2}$ and ${}^{4}F_{9/2}$ levels of La₂O₂S: 2%Er³⁺ and La₂O₂S:2%Er³⁺@La₂O₂S under 1550 nm excitation.

Fig. S5 Top view SEM image of MAPbI₃/La₂O₂S:2%Er³⁺@La₂O₂S composite film.

Fig. S6 Photocurrent-time response curve under 1550 nm excitation at power density of 10mW/cm²

Fig. S7 Photocurrent of MAPbI₃/La₂O₂S:2%Er³⁺@La₂O₂S PDs power density increased from 10 mW/cm² to 300 mW/cm²

Fig. S8 UC luminescence spectrum of $La_2O_2S:2\% Er^{3+}@La_2O_2S$ under 980 nm excitation

Samples	λ (nm)	$T_{r}(s)$	$T_{d}(s)$	Ref.
MAPbI ₃ film	365	< 0.2	< 0.2	[35]
	780	< 0.1	< 0.1	
NaYS ₂ :Er ³⁺ /MAPbI ₃	1550	0.48	0.31	[21]
$MAPbI_{3}/Cs_{x}WO_{3}/NaYF_{4}/\\NaYF_{4}:Yb^{3+},Er^{3+}@NaYF_{4}:Yb^{3+},Tm^{3+}$	980	0.18	0.19	[15]
$MAPbI_3/La_2O_2S:2\% Er^{3+} {} \& La_2O_2S$	1550	0.22	0.21	this work

Tab. S1 Comparison with other photodetectors