Supplementary Information

Edible Temperature-Responsive-Adhesive Thermogalvanic Hydrogel for Self-Powered Multi-Sited Fatigue Monitoring

Xinru Zhang^a, Ning Li^a, Xiaojing Cui^{b,c,*}, Yu Li^a, Zhaosu Wang^a, Kai Zhuo^a, Hulin Zhang^{a,*}

^aCollege of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China

^bShanxi Transportation Technology Research & Development Co., Ltd., Taiyuan 030032, China

^cSchool of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China

*To whom correspondence should be addressed: 20210084@sxnu.edu.cn (X.C.); zhanghulin@tyut.edu.cn (H.Z.)

Fig. S1 (a) Photo of the freeze-dried Gel/GL hydrogel. Scale bar (1 cm). (b) SEM images of the surface captured at various magnifications.

Fig. S2 TG and DTG curves of the Gel/GL hydrogel.

Fig. S3 FTIR spectra of the Gel/GL hydrogel.

Fig. S4 Schematic illustrations of the body temperature-triggered gentle adhesion and ice-cooling-induced painless detachment of the Gel/GL hydrogel.

Fig. S5 Comparison of the Young's modulus and toughness values of the Gel/GL hydrogel with different glycerol volume content.

Fig. S6 (a) The tensile stress-strain curves and (b) comparison of the Young's modulus and toughness values of the Gel/GL hydrogel with different I_2 content.

Fig. S7 Continuous loading and unloading tests at 150% deformation.

	253K 273K		3K	298K		
	Initial state	Stored for two weeks	Initial state	Stored for two weeks	Initial state	Stored for two weeks
Gel/GL						
Gel						

Fig. S8 Photographs of the initial state of the hydrogel and the photos stored at different temperatures for two weeks. Scale bar (1 cm).

Fig. S9 Schematic for the measurement of shear strength based on the standard lap shear test. F force, W width, L length.

Fig. S10 Photographs of adhesion of hydrogels to different materials. Scale bar (1 cm).

Fig. S11 (a) Photographs of the hydrogel sticking to the skin and (b) removing after 10 seconds of freezing. Scale bar (1 cm).

Fig. S12 Photographs of the remodeling Gel/GL hydrogel with desired car shape. Scale bar (1 cm).

Fig. S13 Reversible sol-gel transition of the Gel/GL hydrogel. Scale bar (1 cm).

Fig. S14 Photographs of the large stretching of remolded Gel/GL hydrogel. Scale bar

(1 cm).

Fig. S15 The dissolution of the Gel/GL hydrogel at 40 °C (a), 50 °C (b), 60 °C (c) and 70 °C (d). The softening and dissolution times of the hydrogels are 37 s, 13 s, 6 s, 5 s and 74 s, 60 s, 51 s, 43 s at temperatures of 40 °C, 50 °C, 60 °C and 70 °C, respectively. Scale bar (1 cm).

Fig. S16 The changes of the Gel/GL hydrogel after dissolution stored at room temperature for two days. Scale bar (1 cm).

Fig. S17 Schematic illustration of the Seebeck coefficient measurement setup.

Fig. S18 Frequency-dependent conductance of hydrogels with different doses of I_2 .

Fig. S19 Variation of the electrical conductivity at different temperature gradients.

Fig. S20 Corresponding output voltage and current response of the Gel/GL hydrogel under fixed temperature difference. The cold end is fixed at 273 K, and the temperature difference increment at the hot end is 5 K.

Fig. S21 Current/power-voltage curves for the Gel/GL hydrogel with solvent/gelatin volume ratio of 4 (a) and 8 (b) at varying ΔT .

Fig. S22 Thirty cycles of voltage output at a temperature difference of 12 K.

Fig. S23 The voltage and current during 15 days of dehydration. $\Delta T = 5$ K.

Fig. S24 Se and σ variations for 15 days of dehydration.

Fig. S25 (a) Current-time and (b) voltage-time curves of the Gel/GL hydrogel being repeatedly stretched when T_c = 293 K and T_h = 298 K.

Fig. S26 The current-voltage curves of the Gel/GL hydrogel at different stretched strains.

Fig. S27 (a) Current-time and (b) voltage-time curves of the Gel/GL hydrogel being repeatedly pressed when $T_c=293$ K and $T_h=298$ K.

Fig. S28 Comparison of the Gel/GL hydrogel with existing thermogalvanic gel in terms of the comprehensive performances.

Fig. S29 Photos of the hydrogel pasted in the corner of (a) the eye, (b) under the nose

and (c) near the wrist. Scale bar (1 cm).

Fig. S30 (a) The temperature distribution of the Gel/GL hydrogel during exhalation.(b) The temperature distribution of the Gel/GL hydrogel during inhalation. Scale bar (1 cm).

Fig. S31 The amplified respiratory waveform.

Fig. S32 Flow chart of fatigue driving judgment.

Tester	Gender	Age	Weight(kg	Height(cm)
)	
Tester1	Female	22	54	155
Tester2	Female	23	59	172
Tester3	Female	24	50	160
Tester4	Male	23	78	180
Tester5	Male	24	70	180
Tester6	Male	26	65	170

Table S1. Information of six volunteers for fatigue detection.

	N_RR	N_BF	F_RR	F_BF
Group 1	23	18	13	8
Group 2	20	15	12	7
Group 3	22	14	15	9
Group 4	21	15	14	7
Group 5	23	13	16	10
Group 6	23	12	12	8
Group 7	21	18	12	7
Group 8	22	17	13	8
Group 9	20	16	16	8
Group 10	21	16	14	7
Group 11	23	18	13	9
Group 12	23	17	15	10
Group 13	24	19	16	7
Group 14	25	20	14	6
Group 15	23	20	16	8
Group 16	26	18	15	9
Group 17	23	19	16	10
Group 18	23	17	16	9
Group 19	24	16	15	8
Group 20	23	15	14	6
Group 21	24	13	12	7

Group 22	23	12	13	9
Group 23	24	15	14	6
Group 24	22	18	15	9
Group 25	21	18	14	9
Group 26	20	13	10	8
Group 27	19	18	11	7
Group 28	21	16	12	9
Group 29	18	13	13	10
Group 30	20	12	11	8

Table S2. Values of RR and BF under normal and fatigue conditions extracted from30 groups of waveform data.

Supplemental references:

[1] H. Song, H. Wang, T. Gan, S. Shi, X. Zhou, Y. Zhang and S. Handschuh-Wang, *Adv. Mater. Technol.*, 2023, 2301483.

[2] X. Li, X. Xiao, C. Bai, M. Mayer, X. Cui, K. Lin, Y. Li, H. Zhang and J. Chen, J.
 Mater. Chem. C, 2022, 10, 13789–13796.

[3] P. Yang, K. Liu, Q. Chen, X. Mo, Y. Zhou, S. Li, G. Feng and J. Zhou, Angew. Chem., Int. Ed., 2016, 55, 12050–12053.

[4] X. Li, J. Li, T. Wang, S. A. Khan, Z. Yuan, Y. Yin and H. Zhang, ACS Appl. Mater. Interfaces, 2022, 14, 48743–48751.

[5] Y. Liu, S. Zhang, Y. Zhou, M. A. Buckingham, L. Aldous, P. C. Sherrell, G. G.
Wallace, G. Ryder, S. Faisal, D. L. Officer, S. Beirne and J. Chen, *Advanced Energy Materials*, 2020, 10, 2002539.