Supporting Information for

Donor-acceptor cross-conjugated phenazine macrocycle with large

Stokes shift for "turn-on" sensing transition metal ions

Hui Li, Xuejie Zhang, Jianfeng Peng, Shuaijun Yang,* Riming Hu, Xuchuan Jiang* (Institute for Smart Materials & Engineering, University of Jinan, Shandong 250022, China) ism_yangsj@ujn.edu.cn (S. Y); ism_jiangxc@ujn.edu.cn (X. J)

Table of Contents

1.1 General .2 1.2. Synthetic procedures and characterization data .2 1.3 Preparation of the solutions for optical test and titration. .8 2. Photophysical data of MC-1 and fragment molecules in solution. .10 3. Lippert-Mataga analysis .15 4. Theoretical Calculations. .18 5. Sensing properties .28 6. ¹ H and ¹³ C-NMR spectra .33 7. References .41	1. Experimental section	2
1.2. Synthetic procedures and characterization data .2 1.3 Preparation of the solutions for optical test and titration. .8 2. Photophysical data of MC-1 and fragment molecules in solution. .10 3. Lippert-Mataga analysis .15 4. Theoretical Calculations. .18 5. Sensing properties .28 6. ¹ H and ¹³ C-NMR spectra .33 7. References .41	1.1 General	2
1.3 Preparation of the solutions for optical test and titration. .8 2. Photophysical data of MC-1 and fragment molecules in solution. .10 3. Lippert-Mataga analysis .15 4. Theoretical Calculations. .18 5. Sensing properties .28 6. ¹ H and ¹³ C-NMR spectra .33 7. References .41	1.2. Synthetic procedures and characterization data	2
2. Photophysical data of MC-1 and fragment molecules in solution. 10 3. Lippert-Mataga analysis 15 4. Theoretical Calculations. 18 5. Sensing properties 28 6. ¹ H and ¹³ C-NMR spectra 33 7. References 41	1.3 Preparation of the solutions for optical test and titration.	8
3. Lippert-Mataga analysis 15 4. Theoretical Calculations. 18 5. Sensing properties 28 6. ¹ H and ¹³ C-NMR spectra 33 7. References 41	2. Photophysical data of MC-1 and fragment molecules in solution.	
4. Theoretical Calculations. 18 5. Sensing properties 28 6. ¹ H and ¹³ C-NMR spectra 33 7. References 41	3. Lippert-Mataga analysis	
5. Sensing properties 28 6. ¹ H and ¹³ C-NMR spectra 33 7. References 41	4. Theoretical Calculations.	
6. ¹ H and ¹³ C-NMR spectra 33 7. References 41	5. Sensing properties	
7. References	6. ¹ H and ¹³ C-NMR spectra	
	7. References	

1. Experimental section

1.1 General

¹H-NMR and ¹³C-NMR analyses were performed using a Bruker Avance III 600 spectrometer (¹H NMR, 600 MHz; ¹³C NMR, 151 MHz). As internal references for ¹H-NMR and ¹³C-NMR spectroscopy the signals of CDCl₃ were used and calculated relative to tetramethylsilane (TMS). The high resolution mass spectra were measured with a Thermo Fisher Scientific LTQ FTICR-MS instrument (DART positive ion mode). UV-Vis spectra were recorded using a UV-3600-plus spectrometer. Emission spectra were measured with an Edinburgh FLS1000 fluorimeter using a front-face solid sample configuration for solid samples. Absolute fluorescence quantum yields were obtained using an integrating sphere. All starting materials were purchased from commercial without further purification. Solvents used for optical record were spectroscopic grade. All reactions were carried out under an atmosphere of nitrogen unless otherwise noted.

1.2. Synthetic procedures and characterization data

Synthesis of compound LH-1

Potassium dichromate (3.53 g, 12.00 mmol, 2 eq), 4-bromo-1,2-benzenediol (1.128 g, 6.00 mmol, 1 eq), 36 mL of dilute sulfuric acid, and 200 mL of dichloromethane were added to a 500 mL round-bottomed flask. The reaction mixture was stirred at room temperature for 30 min. When the reaction was completed, the organic phase was isolated, and dried over anhydrous Na₂SO₄. To the dried organic solution were added 4-bromo-1,2-benzene diamine (1.116 g, 6.00 mmol, 1 eq) and 1 mL of acetic acid to accelerate the reaction rate. The reaction mixture was stirred at reflux for 10 h. Upon the completion of the reaction, the reaction mixture was extracted

with dichloromethane and washed with water. The organic layer was dried with anhydrous Na₂SO₄. After removing the solvent, the residue was purified by column chromatography on silica gel using ethyl acetate /petroleum ether (1/15, V/V) as eluent, yielding 0.20 g (9.83%) of **LH-1** as a yellow solid.

¹H-NMR (600 MHz, CDCl₃) δ 8.44 (d, J = 2.2 Hz, 2H), 8.11 (d, J = 9.4 Hz, 2H), 7.92 (dd, J = 9.3, 2.1 Hz, 2H) ppm. ¹³C-NMR (151 MHz, CDCl₃) δ 144.0, 142.2, 134.8, 131.8, 131.1, 126.0 ppm. ES+-HRMS m/z (%): calcd. 338.8976 for C₁₂H₇N₂Br₂, [M+H]⁺, found 338.8955.

Synthesis of compound LH-2

3,5-dibromoaniline (6.414 g, 25.56 mmol, 1 eq), 1-bromohexane (1.128 g, 64.10 mmol, 2.5 eq), tetrabutylammonium bromide (0.824 g, 2.55 mmol, 0.1 eq), and potassium iodide (0.424 g, 2.55 mmol, 0.1 eq) were added to a 100 mL reaction vial. The air was exhausted and replaced three times with nitrogen, and then 20 ml of acetonitrile with sodium hydroxide (8.704 g, 217.60 mmol, 8.5 eq) was added under nitrogen protection. The reaction mixture was stirred at reflux for 22 h. Upon the completion of the reaction, the reaction mixture was extracted with ethyl acetate and washed with water. The organic layer was dried with anhydrous Na₂SO₄. After removing the solvents, the residue was purified by column chromatography on silica gel using dichloromethane/petroleum ether (1/10, V/V) as eluent, yielding 3.95 g (37.3%) of LH-2 as a yellow oil.

¹H-NMR (600 MHz, CDCl₃) δ 6.86 (s, 1H), 6.63 (s, 2H), 3.21 (t, *J* = 3.8 Hz, 4H), 1.57 – 1.53 (m, 4H), 1.34 – 1.30 (m, 12H), 0.90 (t, *J* = 6.9 Hz, 6H) ppm. ¹³C-NMR (151 MHz, CDCl₃) δ 150.1, 123.7, 120.1, 113.1, 51.1, 31.7, 27.0, 26.8, 22.8, 14.1 ppm. ES+-HRMS *m/z* (%): calcd. 420.0667 for C₁₈H₃₀NBr₂, [M+H]⁺, found 420.0646.

Synthesis of compound LH-3

LH-2 (1.098 g, 2.63 mmol, 1 eq), bis(pinacolato)diboron (1.33 g, 5.26 mmol, 2 eq), potassium acetate (1.289 g, 13.15 mmol, 5 eq), and 1,1-bis(diphenylphosphino)ferrocene palladium(II) dichloride (0.19 g, 0.26 mmol, 0.1 eq) were added to 100 mL of a reaction flask. The air was exhausted and replaced three times with nitrogen, and then 25 mL of N,N-dimethylformamide was added under nitrogen protection. The reaction mixture (100°C, oil bath) was stirred for 20 h. Upon the completion of the reaction, the reaction mixture was extracted with dichloromethane and washed with water. The organic layer was dried with anhydrous Na₂SO₄. After removing the solvent, the residue was purified by column chromatography on silica gel using ethyl acetate /petroleum ether (1/10, V/V) as eluent, yielding 1.178 g (87.3%) of LH-3 as a white solid.

¹H-NMR (600 MHz, CDCl₃) δ 7.56 (s, 1H), 7.21 (s, 2H), 3.30 (t, *J* = 7.6 Hz, 4H), 1.56 -1.54 (m, 4H), 1.32 (s, 36H), 0.91 (t, *J* = 6.9 Hz, 6H) ppm.¹³C-NMR (151 MHz, CDCl₃) δ 147.4, 128.7, 121.9, 83.6, 50.7, 31.8, 27.2, 26.9, 25.0, 22.8, 14.2 ppm. ES+-HRMS *m/z* (%): calcd. 514.4161 for C₃₀H₅₄B₂NO₄, [M+H]⁺, found 514.4278.

Synthesis of compound MC-1¹

LH-1 (50 mg, 0.15 mmol, 1 eq.), anhydrous K_2CO_3 (123 mg, 0.89 mmol, 6 eq), and Pd(PPh₃)₄ (17.2 mg, 0.015 mmol, 0.1 eq) were added to a 100 mL reaction vial, and vacuumed to change nitrogen for three times. Reaction solvents (15 mL of

tetrahydrofuran, 6 mL of water, and 5 mL of toluene) were successively added. Toluene solution of **LH-3** (76.5 mg, 0.15 mmol, 1 eq, in 4 mL of toluene) was added dropwise using a microsyringe with the drop time of 30 min. The reaction mixture (100°C, oil bath) was stirred under nitrogen protection for 22 h. Upon the completion of the reaction, the reaction mixture was extracted with ethyl acetate and washed with water. The organic layer was dried with anhydrous Na₂SO₄. After removing the solvents, purified for isolation by preparative thin-layer chromatography on silica gel (eluent: petroleum ether: ethyl acetate = 4:1, V/V), yielding 4 mg (2.0%) of **MC-1** as an orange solid.

¹H-NMR (600 MHz, CDCl₃) δ 8.60 (d, J = 2.2 Hz, 6H), 8.35 (d, J = 9.0 Hz, 6H), 8.12 (d, J = 9.0 Hz, 6H), 7.48 (s, 3H), 7.04 (s, 6H), 3.47 (t, J = 7.7 Hz, 12H), 1.75-1.72 (m, 12H), 1.42-1.40 (m, 12H), 1.38-1.35 (m, 24H), 0.92 (t, J = 6.9 Hz, 18H). ¹³C-NMR (151 MHz, CDCl₃) δ 149.2, 144.6, 144.4, 143.0, 142.4, 131.5, 130.0, 128.3, 127.3, 111.0, 51.5, 31.9, 27.4, 27.1, 22.9, 14.2. ES+-HRMS *m/z* (%): calcd. 1312.8493 for C₉₀H₁₀₆N₉, [M+H]⁺, found 1312.8605.

Synthesis of compound SM-1

2-bromophenazine (50 mg, 195.31 mmol, 2 eq), **LH-3** (50 mg, 97.28 mmol, 1 eq), anhydrous K_2CO_3 (81 mg, 586.11 mmol, 6 eq), and Pd(PPh₃)₄ (11.28 mg, 9.73 mmol, 0.1 eq) were added to a 100 ml reaction flask, evacuated for nitrogen three times. Under the protection of nitrogen, 9 mL of tetrahydrofuran, 6 mL of water, and 9 mL of toluene were added sequentially, and the reaction mixture was stirred (100 °C, oil bath) for 20 h. Upon the completion of the reaction, the reaction mixture was extracted with ethyl acetate and washed with water. The organic layer was dried with anhydrous Na₂SO₄. After removing the solvent, purified for isolation by column chromatography on silca gel (eluent: petroleum ether: ethyl acetate = 4:1, *V/V*), yielding 75 mg (62.4%) of **SMC**-

1 as an orange solid.

¹H-NMR (600 MHz, CDCl₃) δ 8.56 (d, J = 2.2 Hz, 2H), 8.37 (d, J = 9.0 Hz, 2H), 8.29 – 8.24 (m, 6H), 7.87 – 7.86 (m, 4H), 7.51 (s, 1H), 7.17 (s, 2H), 3.49 (t, J = 7.7 Hz, 4H), 1.76 – 1.71 (m, 4H), 1.43 – 1.37 (m, 12H), 0.93 (t, J = 6.9 Hz, 6H) ppm.¹³C-NMR (151 MHz, CDCl₃) δ 149.5, 144.1, 143.9, 143.6, 143.2, 141.6, 131.3, 130.8, 130.5, 130.1, 130.0, 129.7, 126.7, 114.5, 111.0, 51.4, 31.9, 27.5, 27.1, 22.9, 14.3 ppm. ES+-HRMS *m/z* (%): calcd. 618.3518 for C₄₂H₄₄N₅, [M+H]⁺, found 618.3573.

Synthesis of compound SMC-2

LH-1 (50 mg, 0.15 mmol, 1 eq), G (126 mg, 0.31 mmol, 2 eq), anhydrous K₂CO₃ (123 mg, 0.89 mmol, 6 eq), and Pd(PPh₃)₄ (17.20 mg, 0.015 mmol, 0.1 eq) were added to a 100 ml reaction vial. Under the protection of nitrogen, 9 ml of tetrahydrofuran, 6 ml of water, and 9 mL of toluene were sequentially added. The reaction mixture was stirred (100 °C, oil bath) for 18 h. Upon the completion of the reaction, the reaction mixture was extracted with ethyl acetate and washed with water. The organic layer was dried with anhydrous Na₂SO₄. After removing the solvent, purified for isolation by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate = 4:1, as a V/V), yielding 68 mg (65.7%) of SMC-2 as an orange solid.

¹H-NMR (600 MHz, CDCl₃) δ 8.45 (d, J = 2.2 Hz, 2H), 8.31 (d, J = 9.2 Hz, 2H), 8.15 (dd, J = 9.2, 2.0 Hz, 2H), 7.38 (t, J = 8.1 Hz, 2H), 7.08 – 7.07 (m, 4H), 6.76 – 6.73 (m, 2H), 3.38 (t, J = 7.7 Hz, 8H), 1.68 – 1.63 (m, 8H), 1.39 – 1.32 (m, 24H), 0.92 (t, J= 6.9 Hz, 12H) ppm. ¹³C-NMR (151 MHz, CDCl₃) δ 148.9, 144.5, 144.2, 143.0, 140.7, 131.2, 130.1, 130.0, 126.2, 114.8, 112.1, 110.8, 51.3, 31.9, 27.4, 27.1, 22.9, 14.2 ppm. ES+-HRMS *m/z* (%): calcd. 699.5287 for C₄₈H₆₇N₄, [M+H]⁺, found 699.5363.

Synthesis of compound SMC-3

F (70 mg, 0.27 mmol, 1 eq), **G** (110 mg, 0.27 mmol, 1 eq), anhydrous K₂CO₃ (225 mg, 1.63 mmol, 6 eq), and Pd(PPh₃)₄ (31 mg, 0.027 mmol, 0.1 eq) were added in a 100 mL reaction flask, evacuate and replace nitrogen three times under nitrogen protection. Under the protection of nitrogen, 9 mL of tetrahydrofuran, 6 mL of water, and 9 mL of toluene were added sequentially, and the reaction mixture (100°C, oil bath) was stirred for 22 h. Upon the completion of the reaction, the reaction mixture was extracted with ethyl acetate and washed with water. The organic layer was dried with anhydrous Na₂SO₄. After removing the solvent, purified for isolation by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate = 4:1, *V/V*), yielding 104 mg (86.5%) of **SMC-3** as an orange solid.

¹H-NMR (600 MHz, CDCl₃) δ 8.44 (d, J = 2.2 Hz, 1H), 8.30 – 8.25(m, 3H), 8.16 (dd, J = 9.0, 2.2 Hz, 1H), 7.85 – 7.83 (m, 2H), 7.38 (t, J = 4.0 Hz, 1H), 7.07 – 7.06 (m, 2H), 6.75 (dd, J = 8.3, 3.0 Hz, 1H), 3.37 (t, J = 7.74 Hz, 4H), 1.66 – 1.64 (m, 4H), 1.39 – 1.34 (m, 12H), 0.92 (t, J = 6.9 Hz, 6H) ppm. ¹³C-NMR (151 MHz, CDCl₃) δ 148.9, 144.5, 143.9, 143.3, 143.1, 140.6, 131.5, 131.0, 130.3, 130.1, 129.8, 129.8, 129.6, 126.3, 114.8, 112.1, 110.8, 51.3, 31.9, 27.4, 27.0, 22.8, 14.2 ppm. ES+-HRMS *m/z* (%): calcd. 440.2987 for C₃₀H₃₈N₃, [M+H]⁺, found 440.3042.

Synthesis of compound SMC-4

2-Bromophenazine (102 mg, 0.39 mmol, 1 eq), **H** (120 mg, 0.39 mmol, 1 eq), anhydrous K_2CO_3 (327 mg, 2.36 mmol, 6 eq), and Pd(PPh₃)₄ (45 mg, 0.039 mmol, 0.1 eq) were added in a 100 mL reaction flask. The reaction flask was evacuated to change nitrogen three times. Under the protection of nitrogen, 9 mL of tetrahydrofuran, 6 mL

of water, and 9 mL of toluene were added sequentially. The reaction mixture (100°C, oil bath) was stirred for 22 h. Upon the completion of the reaction, the reaction mixture was extracted with ethyl acetate and washed with water. The organic layer was dried with anhydrous Na₂SO₄. After removing the solvent, purified for isolation by column chromatography on silica gel (eluent: petroleum ether: ethyl acetate = 4:1, V/V), yielding 134 mg (76.5%) of **SMC-4** as an orange solid.

¹H-NMR (600 MHz, CDCl₃) δ 8.35 (d, J = 2.2 Hz, 1H), 8.24 – 8.21 (m, 3H), 8.18 (dd, J = 9.2, 2.0 Hz, 1H), 7.84 – 7.75 (m, 4H), 6.79 (d, J = 8.8 Hz, 2H), 3.36 (t, J = 7.2 Hz, 4H), 1.67 – 1.62 (m, 4H), 1.39 – 1.33 (m, 12H), 0.93 (t, J = 6.9 Hz, 6H) ppm. ¹³C-NMR (151 MHz, CDCl₃) δ 148.7, 144.4, 144.0, 143.1, 143.0, 143.0, 130.8, 130.4, 129.8, 129.7, 129.5, 128.5, 125.3, 123.1, 112.1, 51.2, 31.7, 27.4, 27.0, 22.9, 14.3 ppm. ES+-HRMS *m/z* (%): calcd. 440.2987 for C₃₀H₃₈N₃, [M+H]⁺, found 440.2987.

1.3 Preparation of the solutions for optical test and titration.

The solvents and concentrations used in this study: 1) MC-1 and SMC-1-4 solutions in dichloromethane at a concentration of 1.0×10^{-5} mol L⁻¹; 2) phloroglucinol (THB), 1,3,5-tribromobenzene (TBB), folic acid (FA), and cyanuric acid (CA) in acetonitrile at a concentration of 0.01 mol L⁻¹; 3) perchlorate salts (Fe³⁺, Hg²⁺, Pb²⁺, Cu²⁺, Fe²⁺, Co²⁺, Zn²⁺, Ni²⁺, Mn²⁺) in acetonitrile at a concentration of 0.01 mol L⁻¹. The total added volume of metal ion solutions during the titration was controlled within the permissible error.

Detection method: The detection of Fe^{3+} was performed using a 1 cm path length quartz cell at room temperature with a fluorescence excitation wavelength of 388 nm. The selectivity for Fe^{3+} sensing of **MC-1** was conducted by adding 15 µL of the metal ions solutions (Fe^{3+} , Hg^{2+} , Pb^{2+} , Cu^{2+} , Fe^{2+} , Co^{2+} , Zn^{2+} , Ni^{2+} , and Mn^{2+} ions) at a concentration of 0.01 mol L⁻¹ to 3 mL of the **MC-1** solution. The fluorescence emission or absorbance spectra were recorded after reaction for 1 min at room temperature. The same procedure was used for **SMC-1–4**.

The titration of Fe^{3+} ion in the presence of MC-1: 3 mL of MC-1 was taken in the quartz cell, followed by the addition of 1–150 µL of Fe^{3+} ion solution, and the fluorescence intensity or absorbance was recorded after the 1 min of interaction time.

Job's plot: The complexation ratio of **MC-1** molecule with Fe^{3+} was determined by isomolar continuous change method (Job's plot). The total concentration of **MC-1** and Fe^{3+} in the solution system was fixed at 10⁻⁵M, and the change of fluorescence intensity was determined by changing the composition ratio of **MC-1** and Fe^{3+} .²

2. Photophysical data of MC-1 and fragment molecules in solution.

Figure S1. Emission spectra of MC-1 in dichloromethane, were recorded at different concentrations.

Figure S2. Emission spectra of MC-1 in dichloromethane (1×10^{-5} mol L⁻¹, room temperature), were recorded at different excitation wavelengths (unit: nm).

Figure S3. (a) Absorption and (b) Emission spectra of SMC-1 in different solvents $(1 \times 10^{-5} \text{ M})$. (c,d) Images of solutions of SMC-1 $(1 \times 10^{-5} \text{ M})$ in different solvents under ambient (c) and UV light (365 nm) (d). (from left to right cyclohexane (CH), methylcyclohexane (MCH), xylene (Xyl), toluene (Tol), tetrahydrofuran (THF), trichloromethane (CHCl₃), ethyl acetate (EA), dichloromethane (DCM))

Q - 1	$\lambda_{ m ab}$	$\lambda_{ m em}$	$arPhi_{ m fl}$	τ	Stokes shift	FWHM	$K_{ m r}$	$K_{ m nr}$
Solvents	$(nm)^a$	$(nm)^a$	(%) ^b	(ns) ^c	$(cm^{-1})^{a}$	$(nm)^d$	$(10^7 \text{ s}^{-1})^e$	$(10^8 \text{ s}^{-1})^f$
СН	370	500	17.12	4.26	7027	59.32	4.02	1.95
MCH	370	505	14.83	5.17	7225	71.38	2.87	1.65
Tol	375	575	18.57	8.79	9275	126.08	2.11	0.93
Xyl	376	571	10.07	7.78	9082	126.77	1.29	1.16
CHCl ₃	374	693	3.04	2.63	12307	179.21	1.15	3.69
THF	374	692	4.74	4.46	12287	182.06	1.06	2.14
EA	373	699	0.92	2.90	12503	191.76	0.32	3.42
DCM	376	741	4.98	2.99	13100	210.14	1.67	3.18

Table S1 Photophysical data for SMC-1 in different solvents

Figure S4. (a) Absorption and (b) Emission spectra of SMC-2 in different solvents $(1 \times 10^{-5} \text{ M})$. (c,d) Images of solutions of SMC-2 $(1 \times 10^{-5} \text{ M})$ in different solvents under ambient (c) and UV light (365 nm) (d).

Colventa	$\lambda_{ m ab}$	$\lambda_{ m em}$	$arPhi_{ m fl}$	τ	Stokes shift	FWHM	$K_{ m r}$	$K_{ m nr}$
Solvents	$(nm)^a$	$(nm)^a$	(%) ^b	(ns) ^c	$(cm^{-1})^{a}$	$(nm)^d$	$(10^7 \text{ s}^{-1})^e$	$(10^8 \text{ s}^{-1})^{f}$
СН	386	516	18.69	17.71	6526	90.19	1.05	0.46
MCH	385	502	9.81	11.6	6053	78.82	0.84	0.79
Tol	390	591	12.61	11.16	8720	120.98	1.13	0.78
Xyl	390	600	9.58	9.17	8974	135.2	1.04	0.99
CHCl ₃	388	722	< 0.1	3.26	11922	184.91		—
THF	389	722	8.72	4.06	11856	190.1	2.15	2.25
EA	388	729	< 0.1	3.34	12055	200.89		—
DCM	392	774	< 0.1	2.78	12590	220.3		

Table S2 Photophysical data for SMC-2 in different solvents

Figure S5. (a) Absorption and (b) Emission spectra of SMC-3 in different solvents $(1 \times 10^{-5} \text{ M})$. (c,d) Images of solutions of SMC-3 $(1 \times 10^{-5} \text{ M})$ in different solvents under ambient (c) and UV light (365 nm) (d).

Solventa	λ_{ab}	$\lambda_{ m em}$	$arPhi_{ m fl}$	τ	Stokes shift	FWHM	$K_{ m r}$	$K_{ m nr}$
Solvents	$(nm)^a$	$(nm)^a$	(%) ^b	(ns) ^c	$(cm^{-1})^{a}$	$(nm)^d$	$(10^7 \text{ s}^{-1})^e$	$(10^8 \text{ s}^{-1})^f$
СН	369	504	9.2	7.39	7259	82.95	1.24	1.23
MCH	370	509	10.52	7.34	7380	88.08	1.43	1.22
Tol	373	593	9.79	9.77	9946	125.78	1.00	0.92
Xyl	373	607	12.17	7.57	10335	141.57	1.61	1.16
CHCl ₃	374	731	0.5	3.06	13058	193.99	0.16	3.25
THF	371	730	2.17	3.77	13255	205.24	0.58	2.59
EA	371	734	< 0.1	3.04	13330	205.24	—	—
DCM	374	770	0.17	2.72	13751	221.6	0.06	3.68

Table S3 Photophysical data for SMC-3 in different solvents

Figure S6. (a) Absorption and (b) Emission spectra of SMC-4 in different solvents $(1 \times 10^{-5} \text{ M})$. (c,d) Images of solutions of SMC-4 $(1 \times 10^{-5} \text{ M})$ in different solvents under ambient (c) and UV light (365 nm) (d).

Colventa	λ_{ab}	λ_{em}	$arPhi_{ m fl}$	τ	Stokes shift	FWHM	$K_{ m r}$	$K_{ m nr}$
Solvents	$(nm)^a$	$(nm)^a$	(%) ^b	(ns) ^c	$(cm^{-1})^{a}$	$(nm)^d$	$(10^7 \text{ s}^{-1})^e$	$(10^8 \text{ s}^{-1})^f$
СН	461	528	21.26	2.78	2752	78.64	7.65	2.83
MCH	461	528	39.21	2.82	2752	62.5	13.90	2.16
Tol	475	582	53.35	7.96	3870	91.69	6.70	0.57
Xyl	475	590	55.24	6.47	4103	108.04	8.54	0.69
CHCl ₃	486	686	21.98	4.26	5998	127.3	5.16	1.83
THF	477	670	34.04	6.07	6038	144.94	5.61	1.09
EA	475	668	25.6	5.18	6082	142.45	4.94	1.43
DCM	485	712	17.79	4.65	6574	111.56	3.83	1.77

Table S4 Photophysical data for SMC-4 in different solvents

3.Lippert-MatagaAnalysis

To better evaluate the effects of solvents on the emission features, the relationship between the solvent polarity parameter and the Stokes shift according to the Lippert–Mataga equation was investigated.²

$$\Delta v = v_a - v_e = \frac{2(\mu_e - \mu_g)^2}{hca^3} \Delta f + \text{consistant} - \dots (1)$$
$$\Delta f = \frac{\varepsilon - 1}{2\varepsilon + 1} - \frac{n^2 - 1}{2n^2 + 1}$$

where Δv stands for the Stokes shift, v_a and v_e represent the maximum absorption and emission wavenumbers (cm⁻¹), respectively. The letter *h* is Planck's constant, *c* is the speed of light in a vacuum, *a* is the Onsager radius. μ_e and μ_g are the permanent dipole moments of the excited state and the ground state, respectively. The letter ε is the static dielectric constant of the solvent, *n* is the refractive index, and Δf is the orientational polarizability.

Figure S7–S11 show the plots of the Stokes shifts (Δv) versus orientational polarizability (Δf) for MC-1 and SMC-1–4, respectively. According to the Lippert–Mataga equation, the slope of the best-fit line was related to the dipole moment change between the ground state and the excited state ($\Delta \mu = \mu_e - \mu_g$).

Upon simplifying equation (1), we get the following equation:

 $\Delta \mu = 0.00487 \times (V \times m)^{1/2}$ (2)

where V is the volume of the fluorophore in Å³ (Volumes were calculated by molecular mechanics in Spartan) and m is the slope of the linear fit obtained upon plotting vs Δf in cm⁻¹, $\Delta \mu$ in debye (D)

Table S5. Molecular volumes (*V*), slops of the linear fit (*m*), and dipole moment changes ($\Delta \mu$) of MC-1 and SMC-1–4.

Componds	V (Å ³)	т	Δμ (D)
MC-1	1467	24383	29
SMC-1	677	22352	19
SMC-2	822	23661	21
SMC-3	505	24415	17
SMC-4	505	15936	14

Figure S7. Lippert-Mataga plot of emission maxima of MC-1 in different solvents against solvent orientation polarizabilities

Figure S8. Lippert-Mataga plot of emission maxima of SMC-1 in different solvents against solvent orientation polarizabilities

Figure S9. Lippert-Mataga plot of emission maxima of SMC-2 in different solvents against solvent orientation polarizabilities

Figure S10. Lippert-Mataga plot of emission maxima of SMC-3 in different solvents against solvent orientation polarizabilities

Figure S11. Lippert-Mataga plot of emission maxima of SMC-4 in different solvents against solvent orientation polarizabilities

4. Theoretical Calculations.

DFT calculations were performed with the Gaussian 09 software package.³ Geometry optimizations and vertical excitations were calculated by means of hybrid density functional B3LYP with the basis set of 6-31G(d,p). The input files and orbital representations were generated with Gaussview 5.0. Excitation energies and oscillator strengths for the optimized structures were calculated using TD-DFT (B3LYP/6-31G(d,p)). The frontier molecular orbitals of MC-1 and SMC-1–4 were calculated using simplified model molecules MC-1' and SMC-1'–4', which have smaller methyl groups replacing the *n*-hexyl groups to reduce the computational cost.

Figure S12. Calculated excited state geometries of MC-1' and SMC-1'-4' (DFT-B3LYP/6-31G(d,p)) using the simplified models with torsion angles labeled. The *n*-hexyl groups are simplified as methyl groups.

	C-C single bond		-	C-1	N single bond	
Ground state (°)	Excited state (°)	$\Delta \theta$ (°)		Ground state $(^{\circ})$	Excited state (°)	$\Delta \theta$ (°)
-28.9	-26.9	2		-9.9	12.0	21.9
28.8	27.8	1		9.2	10.6	1.4
24.3	22.8	1.5		9.2	12.2	3
-38.3	-38.1	0.2		-9.6	-12.4	2.8
38.5	39.3	0.8		9.3	9.1	0.2
-24.5	-25.1	0.6		-9.4	-9.4	0

Table S6 Torsion angles of MC-1' at ground state and excited state.^a

^aTorsion angle values were obtained from the optimaized structure of MC-1' at ground state and excited state.

 Table S7 Torsion angles of SMC-1'-4' at ground state and excited state.^a.

	C-C single bond				C-	N single bond	
	Ground state (°)	Excited state (°)	$\Delta \theta$ (°)		Ground state (°)	Excited state (°)	$\Delta \theta$ (°)
SMC 1	38.7	37.0	1.7	_	-1.6	-12.0	10.4
SMC-1	38.7	36.6	2.1		-1.6	-11.5	9.9
SMC-2	27.6	25.2	2.2	·	-9.8	-12.4	2.6
	-37.0	-35.5	2.5		11.7	15.5	3.8
5010 -	27 (26.0	0.7		9.7	-0.4	10.1
	57.0	30.9	0.7		-11.7	-0.3	11.4
SMC 2	277	29.1	0.4		9.6	-10.5	20.1
SMC-3	37.7	38.1	0.4		-11.4	-10.1	1.3
SMC-4	22.2	-38.4	5 1		-8.1	1.1	9.2
	-33.3		5.1		9.5	1.4	8.1

^{*a*}Torsion angle values were obtained from the optimaized structure of MC-1' at ground state and excited state.

Figure S13. Energy-level diagrams and pictorial representation of frontier molecular orbitals of **SMC-1'** and **SMC-2'** in its optimized ground-state geometry, calculated at the B3LYP/6-31G(d,p) level in gas phase. The *n*-hexyl groups are simplified as methyl groups. H = HOMO; L = LUMO.

Figure S14. Energy-level diagrams and pictorial representation of frontier molecular orbitals of **SMC-3'** and **SMC-4'** in its optimized ground-state geometry, calculated at the B3LYP/6-31G(d,p) level in gas phase. The *n*-hexyl groups are simplified as methyl groups. H = HOMO; L = LUMO.

G 4 4	Excitatio	on energy	Oscillator	F ' <i>i i</i> '	XX7 * 1 /
State	[eV]	[nm]	strength (f)	Excitation	Weight
				HOMO-2→LUMO	0.18877
				HOMO-2→LUMO+2	-0.11153
1	2.4821	499.51	0.0004	HOMO-1→LUMO+1	0.22719
				HOMO→LUMO	0.61818
				HOMO→LUMO+2	-0.1257
				HOMO-2→LUMO+1	0.23045
n	2 1803	108 07	0.0052	HOMO-1→LUMO	-0.29357
2 4	2.4695	490.07	0.0052	HOMO-1→LUMO+2	0.46867
				HOMO→LUMO+1	-0.369
				HOMO-2→LUMO+1	0.40833
2	2 1806	408.01	0.0028	HOMO-1→LUMO	0.13928
3	2.4090	496.01	0.0028	HOMO-1→LUMO+2	0.26591
				HOMO→LUMO+1	0.48693
				HOMO-2→LUMO	-0.16505
1	2 1016	407.01	0.0076	HOMO-2→LUMO+2	-0.40955
4	2.4940	946 497.01 0.0076	0.0070	HOMO→LUMO	0.10764
				HOMO→LUMO+2	0.53378
5	2.5005	495.83	0.0118	HOMO-2→LUMO	0.53193

 Table S8 Computed excitation energies and oscillator strengths for MC-1 from TD-DFT calculations

				HOMO-2→LUMO+2	-0.16494
				HOMO-1→LUMO	-0.10993
				HOMO-1 \rightarrow LUMO+1	-0 3895
				HOMO-1 \rightarrow LUMO+2	-0 11879
				HOMO-2→LUMO	0.14933
				$HOMO-2 \rightarrow UIMO+1$	-0 35025
6	2.501	495.74	0.0113		0.42627
				$HOMO_1 \rightarrow UMO_2$	0.42027
					-0.15434
				HOMO $2 \rightarrow UMO+1$	0 32527
				HOMO $1 \rightarrow UMO$	0.32327
				HOMO $1 \rightarrow UMO+1$	0.37503
7	2.6951	460.03	0.0002	$HOMO_1 \rightarrow UMO_2$	-0.23031
					0.13756
				$HOMO \rightarrow LUMO \pm 1$	0.13750
				$HOMO \rightarrow LUMO+2$	-0.30201
				$\frac{10000 \rightarrow 100012}{1000012}$	0.20528
				HOMO 2 \rightarrow LUMO+1	0.30328
				HOMO $1 \rightarrow LUMO$	0.20204
0	2 6061	150.96	0.0001	HOMO-I \rightarrow LUMO	0.20090
0	2.0901	439.80	0.0001	$HOMO \rightarrow LUMO + I$	0.43933
				$HOMO \rightarrow LUMO + 1$	-0.22931
				$HOMO \rightarrow LUMO + 2$	-0.169/5
				$\frac{10000}{10000}$	0.13441
				HOMO-2 \rightarrow LUMO	0.1112
9	2.7013	458.97	0.0000	HOMO- $2 \rightarrow LUMO+2$	0.53626
				HOMO LUMO	0.1/442
				$\frac{HOMO \rightarrow LOMO + 2}{HOMO \rightarrow LOMO + 2}$	0.40032
10	2 0 4 4 2	421 12	0.0010	HOMO-4 \rightarrow LUMO+1	0.16235
10	2.9442	421.12	0.0018	HOMO-3 \rightarrow LUMO	0.64982
				$\frac{1000-3 \rightarrow 1000+2}{10000}$	-0.13393
11	2 0571	410.29	0.0024	HOMO-4 \rightarrow LUMO	0.51409
11	2.9571	419.28	0.0024	HOMO-4 \rightarrow LUMO+1	0.35273
				HOMO-3→LUMO+1	0.29422
				HOMO-9→LUMO	0.10623
12	2.9841	415.48	0.0046	HOMO-6→LUMO	-0.3431
				HOMO-4 \rightarrow LUMO+1	0.48519
				$\frac{HOMO-3\rightarrow LOMO+2}{HOMO-3\rightarrow LOMO+2}$	0.31564
13	2.9952	413.94	0.0004	HOMO-4 \rightarrow LUMO+2	0.50447
				HOMO-3→LUMO+I	-0.466/2
				HOMO-II→LUMO	0.25/21
				HOMO-10→LUMO	-0.27585
				HOMO-10 \rightarrow LUMO+2	0.10344
14	3.0189	410.7	0.0489	HOMO-9→LUMO+1	0.38939
				HOMO-6 \rightarrow LUMO+1	-0.1086
				HOMO-4→LUMO	0.24257
				HOMO-4 \rightarrow LUMO+2	-0.20461
				HOMO-3→LUMO+I	-0.25999
				HOMO-11 \rightarrow LUMO+1	0.29873
1.7	0.00/7	100 (1	0.0000	HOMO-10→LUMO+1	-0.32905
15	3.0267	409.64	0.0080	HOMO-9→LUMO	0.43724
				HOMO-9 \rightarrow LUMO+2	-0.14729
				HOMO-3→LUMO+2	-0.26808
				HOMO-11→LUMO	0.16488
16	3.0312	409.03	0.0020	HOMO-11 \rightarrow LUMO+2	0.48808
	2.0012			HOMO-10→LUMO	0.17907
				HOMO-10→LUMO+2	0.43551

				HOMO-11→LUMO	-0.20123
				HOMO-10→LUMO	0.20191
17	2 0205	407.0	0.0652	HOMO-9→LUMO+1	-0.29269
1 /	5.0595	407.9	0.0032	HOMO-4→LUMO	0.37721
				HOMO-4→LUMO+2	-0.24244
				HOMO-3→LUMO+1	-0.32693
				HOMO-11→LUMO+1	0.10709
				HOMO-10→LUMO+1	-0.11802
				HOMO-9→LUMO	0.15741
18	3.0425	407.5	0.0773	HOMO-6→LUMO+2	-0.11309
				HOMO-4→LUMO+1	-0.38603
				HOMO-3→LUMO	0.21716
				HOMO-3→LUMO+2	0.4805
				HOMO-7→LUMO+1	-0.10585
10	2 1506	202.4	0.0043	HOMO-6→LUMO	0.56423
19	5.1590	392.4	0.0043	HOMO-4→LUMO+1	0.28353
				HOMO-3→LUMO+2	0.23949
20	3.2025	387.14	0.0003	HOMO-5→LUMO	0.68987
21	3 2100	385.05	0.0789	HOMO-6→LUMO+1	0.2629
21	5.2177	565.05	0.0709	HOMO-5→LUMO+2	0.62977
22	3 2209	384 94	0.0585	HOMO-6→LUMO+2	-0.20328
	5.2207	501.91	0.0505	HOMO-5→LUMO+1	0.65988
				HOMO-6→LUMO+1	0.59826
23	3.2285	384.03	0.1816	HOMO-5→LUMO+2	-0.28257
				HOMO-4→LUMO	0.13976
				HOMO-6→LUMO	-0.11734
24	3 2322	383 59	0 1750	HOMO-6→LUMO+2	0.62271
21	5.2522	565.57	0.1750	HOMO-5→LUMO+1	0.21165
				HOMO-3→LUMO	0.11731
				HOMO-8→LUMO+1	-0.13199
				HOMO-7→LUMO	0.60912
				HOMO-7→LUMO+2	-0.13129
25	3.5597	348.3	0.0622	HOMO-6→LUMO+1	0.1684
				HOMO-3→LUMO+3	-0.1312
				HOMO-1→LUMO+3	-0.10247
				HOMO→LUMO+4	-0.10476
	1.	2		······ 0.40	
				imulated	
	1.	.0-		xperiment	
	u	- <i> </i>		scillator strength - 0.30 _	
	.0 Tp	.8-		je je	
	oso	[A	- 0.25 b	
	.0 ਯ	.6-	H	- 0.20 🛱	
	zei	1 1 1			

Figure. S15 Experimental UV-vis absorption spectrum in DCM solution (black line) and simulated spectrum (red line) of MC-1. Spectra were normalized at the intensity of the lowest energy absorption maxima.

State	Excitation	Excitation energy		Excitation	Weight
[eV]		[nm]	strength (f)	Excitation	weight
1	2.4772	500.51	0.0278	HOMO→LUMO	0.70540
2	2.5064	494.67	0.0016	HOMO→LUMO+1	0.70562
				HOMO-5→LUMO+1	-0.41116
3	3.051	406.38	0.0080	HOMO-4→LUMO	0.41796
				HOMO-1→LUMO+1	-0.37452
1	3 054	405.07	0.0036	HOMO-5→LUMO	0.49556
+	5.054	403.97	0.0030	HOMO-4→LUMO+1	-0.49162
				HOMO-5→LUMO+1	-0.27224
5 3.0618	404.04	0.0437	HOMO-4→LUMO	0.27395	
	5.0018	404.94	0.0437	HOMO-2→LUMO	-0.12904
				HOMO-1→LUMO+1	0.5708
6	2 082	102 28	0.0720	HOMO-2→LUMO+1	-0.15835
0	5.082	402.28	0.0730	HOMO-1→LUMO	0.67819
7	3 7356	383 10	0.0233	HOMO-2→LUMO	0.68119
/	5.2550	365.19	0.0233	HOMO-1→LUMO+1	0.14980
Q	2 2551	280.80	0.0006	HOMO-2→LUMO+1	0.68096
0	5.2551	360.89	0.0000	HOMO-1→LUMO	0.16394
				HOMO-6→LUMO	0.19038
0	3 5771	346 58	0 2440	HOMO-3→LUMO+1	0.64017
2	5.5774	540.58	0.2449	HOMO-2→LUMO+2	0.12097
				HOMO-1→LUMO+3	0.11125
				HOMO-6→LUMO+1	0.15635
10	3 5883	.5883 345.52	0 1002	HOMO-3→LUMO	0.64
10	5.5005		0.1002	HOMO-2→LUMO+3	-0.13358
				HOMO-1→LUMO+2	-0.17409

Table S9 Computed excitation energies and oscillator strengths for SMC-1' from TD-DFT calculations

Figure S16. Experimental UV-vis absorption spectrum in DCM solution and oscillator strengths of SMC-1

State -	Excitation energy		Oscillator	Excitation	Weight
	[eV]	[nm]	strength (f)	Excitation	weight
1	2.4848	498.97	0.0036	HOMO-1→LUMO	-0.12673
				HOMO→LUMO	0.69381
2	2.4859	498.76	0.0311	HOMO-1→LUMO	0.69417
				HOMO→LUMO	0.12663
3	3.0384	408.06	0.0133	HOMO-4→LUMO	0.15833
				HOMO-2→LUMO	0.68257
4	3.046	407.04	0.0022	HOMO-4→LUMO	0.68432
				HOMO-2→LUMO	-0.15713
5	3.303	375.37	0.4021	HOMO-3→LUMO	0.67757
3				HOMO-2→LUMO+1	0.16555
6	3.8821	319.37	0.1538	HOMO-6→LUMO	-0.14335
				HOMO→LUMO+1	0.67339
	3.8884	318.86	0.0165	HOMO-5→LUMO	-0.29085
7				HOMO-1→LUMO+1	0.62818
				HOMO→LUMO+2	-0.10225
8	3.9771	311.75	0.0059	HOMO-6→LUMO	0.61229
				HOMO-2→LUMO+1	0.26059
				HOMO-2→LUMO+3	0.1156
				HOMO→LUMO+1	0.14532
9	3.9817	311.39	0.0400	HOMO-5→LUMO	0.63088
				HOMO-1→LUMO+1	0.28897
10	4.301	288.27	0.3985	HOMO-7→LUMO	0.5659
				HOMO-3→LUMO	-0.11056
				HOMO-2→LUMO+1	0.37194

Table S10. Computed excitation energies and oscillator strengths for SMC-2' from TD-DFT calculations

Figure S17. Experimental UV-vis absorption spectrum in DCM solution and oscillator strengths of SMC-2

State -	Excitation energy		Oscillator	Excitation	Waight
	[eV]	[nm]	strength (f)	Excitation	weight
1	2.454	505.23	0.0146	HOMO→LUMO	0.70555
2	3.0581	405.42	0.0023	HOMO-3→LUMO	0.69754
3	3.0995	400.01	0.0679	HOMO-1→LUMO	0.69610
4	3.5568	348.59	0.1894	HOMO-2→LUMO	0.66056
				HOMO-1→LUMO+1	-0.20322
5	3.9598	313.11	0.0858	HOMO→LUMO+1	0.68674
	4.003	309.73	0.0119	HOMO-5→LUMO	-0.17141
(HOMO-4→LUMO	0.62568
0				HOMO-1→LUMO+1	0.21038
				HOMO-1→LUMO+2	0.11363
	4.2558	291.33	0.0253	HOMO-5→LUMO	0.65514
7				HOMO-4→LUMO	0.11142
				HOMO-1→LUMO+1	0.17024
8	4.6334	267.59	0.0114	HOMO→LUMO+2	0.66532
				HOMO→LUMO+3	0.15658
9	4.6832	264.74	0.0026	HOMO-7→LUMO	0.62946
				HOMO-3→LUMO+1	0.305
10	4.7102	263.22	0.0449	HOMO-7→LUMO	-0.30871
				HOMO-3→LUMO+1	0.59183
				HOMO-3→LUMO+2	0.11215
				HOMO-1→LUMO+1	0.11781

Table S11. Computed excitation energies and oscillator strengths for SMC-3' from TD-DFT calculations

Figure S18. Experimental UV-vis absorption spectrum in DCM solution and oscillator strengths of SMC-3

State	Excitation energy		Oscillator	Excitation	Weight
	[eV]	[nm]	strength (f)	Excitation	weight
1	2.508	494.36	0.2100	HOMO→LUMO	0.70331
2	3.0672	404.23	0.0016	HOMO-2→LUMO	0.70313
3	3.2904	376.8	0.0557	HOMO-1→LUMO	0.69395
4	3.8303	323.69	0.0137	HOMO-3→LUMO	0.55008
				HOMO-1→LUMO+1	0.25877
				HOMO→LUMO+1	0.32653
5	4.0341	307.34	0.0124	HOMO-4→LUMO	0.67861
				HOMO→LUMO+2	0.10224
	4.0815	303.77	0.9496	HOMO-3→LUMO	-0.29203
6				HOMO-1→LUMO+1	-0.13437
				HOMO→LUMO+1	0.61087
7	4.1061	301.95	0.0001	HOMO-5→LUMO	0.67772
				HOMO-4→LUMO	0.10685
8	4.4551	278.29	0.0286	HOMO-4→LUMO	-0.13132
				HOMO-4→LUMO+1	0.13763
				HOMO→LUMO+2	0.59265
				HOMO→LUMO+3	-0.29824
9	4.6925	264.22	0.0003	HOMO-7→LUMO	0.64675
				HOMO-2→LUMO+1	0.27288
10	4.7151	262.95	0.1168	HOMO-2→LUMO+1	0.23348
				HOMO-1→LUMO+1	-0.18887
				HOMO→LUMO+2	0.2733
				HOMO→LUMO+3	0.54015

 Table S12. Computed excitation energies and oscillator strengths for SMC-4' from TD-DFT calculations

Figure S19. Experimental UV-vis absorption spectrum in DCM solution and oscillator strengths of SMC-4

5. Sensing properties

Figure S20. PL spectrum changes of **MC-1** $(1 \times 10^{-5} \text{ M})$ when different amounts of (a) phloroglucinol (THB), (b) 1,3,5-tribromobenzene (TBB), (c) folic acid (FA), and (d) cyanuric acid (CA) are added.

Figure S21. (a) Absorption and (b) emission spectra of MC-1 in DCM $(1 \times 10^{-5} \text{ M})$ recorded when different amounts of acetonitrile (CH₃CN) were added.

Figure S22. (a) Absorption spectra of MC-1 in DCM $(1 \times 10^{-5} \text{ M})$ with different equivalents of Fe³⁺. (b) Molar extinction coefficient (ε) of MC-1 solution versus different Fe³⁺ equivalents at 388 nm and 424 nm.⁴

Figure S23. Job's plot of fluorescence intensity of MC-1 at 545 nm versus the mole fraction of Fe^{3+} ion. The largest fluorescence intensity appeared at the mole fraction of 0.75, indicating that the ratio of MC-1 to Fe^{3+} is 1:3.

Figure S24. (a) Absorption and (b) emission spectra of **SMC-1** in DCM $(1 \times 10^{-5} \text{ M})$ with various metal ions (5 equivalents). (c,d) Images of solutions of **SMC-1** $(1 \times 10^{-5} \text{ M})$ with various metal ions under ambient (c) and UV light (365 nm) (d).

Figure S25. (a) Absorption and (b) emission spectra of **SMC-2** in DCM $(1 \times 10^{-5} \text{ M})$ with various metal ions (5 equivalents). (c,d) Images of solutions of **SMC-2** $(1 \times 10^{-5} \text{ M})$ with various metal ions under ambient (c) and UV light (365 nm) (d).

Figure S26. (a) Absorption and (b) emission spectra of **SMC-3** in DCM $(1 \times 10^{-5} \text{ M})$ with various metal ions (5 equivalents). (c,d) Images of solutions of **SMC-3** $(1 \times 10^{-5} \text{ M})$ with various metal ions under ambient (c) and UV light (365 nm) (d).

Figure S27. (a) Absorption and (b) emission spectra of **SMC-4** in DCM $(1 \times 10^{-5} \text{ M})$ with various metal ions (5 equivalents). (c,d) Images of solutions of **SMC-4** $(1 \times 10^{-5} \text{ M})$ with various metal ions under ambient (c) and UV light (365 nm) (d).

Figure S28. Comparison of normalized fluorescence intensity of MC-1 and SMC-1–4 in DCM (1×10^{-5} M) at the most enhanced wavelengths (545, 523, 545, 544, and 531 nm, respectively) with various metal ions (5 equivalents). MC-1 shows a better selectivity.

Figure S29. Schematic diagram of the proposed mechanism of **MC-1** recognizing Fe³⁺ ion and the corresponding excited state decay pathway.

6. ¹H and ¹³C-NMR spectra

Figure S33. ¹³C-NMR spectrum of LH-2 in CDCl₃

Figure S35. ¹³C-NMR spectrum of LH-3 in CDCl₃

Figure S37. ¹³C-NMR spectrum of MC-1 in CDCl₃

Figure S39. ¹³C-NMR spectrum of SMC-1 in CDCl₃

Figure S41. ¹³C-NMR spectrum of SMC-2 in CDCl₃

Figure S43. ¹³C-NMR spectrum of SMC-3 in CDCl₃

Figure S45. ¹³C-NMR spectrum of SMC-4 in CDCl₃

7. References

- B. Y. Lu, S. Kanehashi, K. Minegishi, P. S. Wang, J. Cheng, K. Ogino, S. Li, *RSC. Adv.*, 2021, 11, 33431-33437.
- A. Dhara, T. Sadhukhan, G. E. Sheetz, H. A. Olsson, K. Raghavachari, H. A. Flood, J. Am. Chem. Soc., 2020, 142, 12167-12180.
- J. M. Frisch, W. G. Trucks, B. H. Schlegel, E. G. Scuseria, A. M. Robb, R. J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, A. G. Petersson, H. Nakatsuji, M. Caricato, X. Li, P. H. Hratchian, F. A. Izmaylov, J. Bloino, G. Zheng, L. J. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, A. J. Montgomery, E. J. Peralta, Jr., F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, N. K. Kudin, N. V. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, C. J. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, M. J. Millam, M. Klene, E. J. Knox, B. J. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, E. R. Stratmann, O. Yazyev, J. A. Austin, R. Cammi, C. Pomelli, W. J. Ochterski, L. R. Martin, K. Morokuma, G. V. Zakrzewski, A. G. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, D. A. Daniels, O. Farkas, B. J. Foresman, V. J. Ortiz, J. Cioslowski, J. D. Fox, Gaussian 09, v D.01; Gaussian, Inc.: Wallingford, CT, 2009.
- 4. G. Liao, C. Zheng, D. Xue, C. Fan, G. Liu, S. Pu, RSC. Adv., 2016, 6, 34748-34753.