Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supplemental Material

Insights on the electronic structure of Tin (II) pyrochlore oxides with

5s² lone pair states as transparent p-type oxide semiconductors

Jueli Shi^{1, 2}, Ziqian Sheng^{1, 2}, Yong-bin Zhuang¹, Dong-Chen Qi^{3*}, Kelvin H.L.

Zhang^{1, 2*}

¹State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China ²Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China. ³Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4001, Australia *Email: dongchen.qi@qut.edu.au; kelvinzhang@xmu.edu.cn

Figure S1. The crystal structure (a) litharge SnO; (b) pyrochlore $Sn_2Nb_2O_7$ and (c) pyrochlore $Sn_2Ta_2O_7$.

Figure S2. Reciprocal space mapping (RSM) of (a) SnO, (b) $Sn_2Nb_2O_7$ and (c) $Sn_2Ta_2O_7$ thin films grown on YSZ (001) substrate.

Figure S3. The optical absorption coefficient spectra of SnO, $Sn_2Nb_2O_7$ and $Sn_2Ta_2O_7$ thin films.

Figure S4. (a) X-ray diffraction (XRD) of $Sn_2Nb_2O_7$ (TNO) grown on YSZ (001) and In_2O_3 thin film coated YSZ(001) substrates; (b) Sn $3d_{5/2}$, (c) Nb 3d and (d) VB XPS spectra of TNO thin films excited with photon energy of 1486 eV; (e) X-ray diffraction (XRD) of $Sn_2Ta_2O_7$ (TTO) grown on YSZ (001) and In_2O_3 thin film coated YSZ (001) substrates; (b) Sn $3d_{5/2}$, (c) Nb 3d and (d) VB XPS spectra of TTO thin films excited with photon energy of 1486 eV.

Figure S5. Sn M-edge XAS of SnO, Sn₂Nb₂O₇ and Sn₂Ta₂O₇.

Figure S6. HSE06 calculated DOSs for (a) SnO, (b) $Sn_2Nb_2O_7$ and (c) $Sn_2Ta_2O_7$ from -12 eV to 12 eV.

Figure S7. The parabolic fitting of hole effective mass at valence band maximum of (a) SnO; (b) Sn₂Nb₂O₇; (c) Sn₂Ta₂O₇.

Figure S8. The parabolic fitting of electron effective mass at valence band maximum of (a) SnO; (b) $Sn_2Nb_2O_7$; (c) $Sn_2Ta_2O_7$.

Figure S9. Partial electron density contour plots for litharge SnO. (a) -3.5 to 0 eV; (b) -7 to -3.5 eV (c) -10 to -7 eV.

.

Figure S10. Partial electron density contour plots for pyrochlore $Sn_2Nb_2O_7$. (a) -3.5 to 0 eV; (b) -7 to -3.5 eV (c) -10 to -7 eV.

Figure S11. Partial electron density contour plots for pyrochlore $Sn_2Ta_2O_7$. (a) -3.5 to 0 eV; (b) -7 to -3.5 eV (c) -10 to -7 eV.

Materials	Quadratic term coefficient (C) of fitting	Hole effective mass $\frac{1}{2C} / m_{hole}^{*}$	R-square (R ²) of fitting	Direction
SnO (Tetragonal)	-1.008±0.013	0.496	0.9999	Γ–Ζ
Sn ₂ Nb ₂ O ₇	-0.239±0.026	2.092	0.9983	Γ–L
Sn ₂ Ta ₂ O ₇	-0.224±0.019	2.232	0.9993	Γ–L

Table S1 The parabolic fitting parameters of hole effective mass

Table S2 The parabolic fitting parameters of electron effective mass

Materials	Quadratic term coefficient C of fitting	Electron effective mass $\frac{1}{2C} / m_{elec}^{*}$	R-square (R²) of fitting	Direction
SnO (Tetragonal)	0.624±0.098	0.801	0.9991	Г–М
$Sn_2Nb_2O_7$	0.301±0.028	1.661	0.9988	Г–К
Sn ₂ Ta ₂ O ₇	0.265±0.026	1.887	0.9988	Г–К

Materials	In-Plane (Å)	Out-of-Plane (Å)	Bulk values (Å)
SnO (Tetragonal)	a=3.84	c=4.85	a=3.80, c=4.84
Sn ₂ Nb ₂ O ₇	a=10.49	a=10.57	a=10.58
Sn ₂ Ta ₂ O ₇	a=10.42	a=10.49	a=10.48

Table S3. Comparison of lattice parameters of epitaxial SnO, $Sn_2Nb_2O_7$ and $Sn_2Ta_2O_7$ thin films with their bulk values.

Table S4. The parabolic fitted effective mass of electrons and holes at different kpoints in the Brillion zone for SnO, $Sn_2Nb_2O_7$ and $Sn_2Ta_2O_7$. The directions of the carriers' movement are also listed behind the effective mass value.

Material		Effective mass / m _e	Direction
SnO	Electron	0.80	М-Г
	Hole	0.50	Г-Z
$Sn_2Nb_2O_7$	Electron	1.66	Г-К
	Hole	2.09	L-Γ
$Sn_2Ta_2O_7$	Electron	1.89	Г-К
	Hole	2.23	L-Γ