Supplementary Information for Assessing the Design Rules of Electrides

Zhikun Yao, a Yanzhen Zhao, a Wenjun Zhang a and Lee A.Burton*b

Table S1. The full list of 51 candidates is displayed in order of the value of the Materials Project materials ID number. The chemical formula, crystal type, symmetry, electrides type and average electronegative of materials are included in the table.

MP-ID		Crystal	Space	Symmetry	Elelectrides	Average	
	Formula	System	group	number	type	electronegative	
mp-1029640	Ba ₃ OsN ₃	Hexagonal	P6_3/m	176	1D	1.998571429	
mp-1029686	Sr ₃ OsN ₃	Hexagonal	P6_3/m	176	1D	2.024285714	
mp-1029741	Sr ₃ IrN ₃	Hexagonal	P 6_3/m	176	1D	2.024285714	
mp-1029750	Sr ₃ RuN ₃	Hexagonal	P6_3/m	176	1D	2.024285714	
mp-1096	CeS	Cubic	Fm-3m	225	0D	1.85	
mp-1103552	EuAl ₂ Se ₄	Orthorhombic	Cccm	66	1D	2.088571429	
mp-1103889	$EuAl_2S_4$	Orthorhombic	Cccm	66	1D	2.105714286	
mp-1113208	Cs2EuCuCl6	Cubic	Fm-3m	225	0D	2.364	
mp-1161	LaSe	Cubic	Fm-3m	225	0D	1.825	
mp-1190820	Ba ₂ FeGe ₂ O ₇	Tetragonal	P-42_1m	113	0D	2.6425	
mp-1197890	Li2Ti2P3O12	Orthorhombic	Pbcn	60	1D	2.783684211	
mp-1199363	Ba ₃ AlO ₄	Orthorhombic	Pnma	62	0D	2.255	
mp-1219790	RbIr ₆ O ₁₂	Tetragonal	I4/m	87	1D	2.910526316	
mp-1226163	La ₂ CeTe ₄	Tetragonal	I-42d	122	0D	1.674285714	
mp-1044323	TiMoP ₃ O ₁₂	Trigonal	R3c	161	1D	3.032352941	
mp-1240	HoS	Cubic	Fm-3m	225	0D	1.905	
mp-1044343	TiP ₃ WO ₁₂	Trigonal	R3c	161	1D	3.044117647	
mp-1245	Sr ₂ N	Trigonal	R-3m	166	2D	1.646666667	
mp-1610	TbS	Cubic	Fm-3m	225	0D	1.84	
mp-1623	ErS	Cubic	Fm-3m	225	0D	1.91	
mp-17242	$Nb_2P_3O_{12}$	Trigonal	R-3c	167	1D	3.002941176	
mp-1766	TmS	Cubic	Fm-3m	225	0D	1.915	
mp-1892	Ba ₂ N	Trigonal	R-3m	166	2D	1.606666667	
mp-19165	BaFeSi ₄ O ₁₀	Tetragonal	P4/ncc	130	1D	2.795	
mp-19508	SrCrSi ₄ O ₁₀	Tetragonal	P4/ncc	130	1D	2.788125	
mp-19518	BaCrSi ₄ O ₁₀	Tetragonal	P4/ncc	130	1D	2.784375	
mp-22261	InCuTe ₂	Tetragonal	I-42d	122	1D	1.97	
mp-22422	Ce ₃ Te ₄	Cubic	I-43d	220	1D	1.68	
mp-2350	LaS	Cubic	Fm-3m	225	0D	1.84	
mp-2470	DyS	Cubic	Fm-3m	225	0D	1.9	
mp-2563	CeSe	Cubic	Fm-3m	225	0D	1.835	
mp-2686	Ca ₂ N	Trigonal	R-3m	166	2D	1.68	
mp-27334	Tl ₃ FeCl ₅	Tetragonal	I4/mcm	140	0D	2.498888889	
mp-37312	NaLa ₈ Se ₁₂	Tetragonal	I-42d	122	0D	1.92047619	

^a International Centre for Quantum and Molecular Structures, Department of Physics, Shanghai University, Shanghai 200444, China.

^b Department of Materials Science and Engineering, The Ilby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel

mp-3779	CrSiTe ₃	Trigonal	R-3	148	2D	1.972
mp-3787	RbFe ₂ S ₃	Orthorhombic	Cmcm	63	0D	2.036666667
mp-510262	Cs ₃ O	Hexagonal	P6_3/mcm	193	1D	1.4525
mp-510402	GdS	Cubic	Fm-3m	225	0D	1.89
mp-541318	$CsTi_3Si_2P_6O_{25}$	Trigonal	P-31c	163	0D	2.928378378
mp-541449	CrGeTe ₃	Trigonal	R-3	148	2D	1.994
mp-542475	$CsFe_2S_3$	Orthorhombic	Cmcm	63	1D	2.031666667
mp-569673	PrI ₂	Cubic	F-43m	216	0D	2.15
mp-573523	Sr ₈ Fe ₃ N ₈	Monoclinic	C2/m	12	1D	1.968947368
mp-574283	GdTe	Cubic	Fm-3m	225	0D	1.65
mp-656	LuS	Cubic	Fm-3m	225	0D	1.925
mp-662563	CsFe ₂ Se ₃	Orthorhombic	Cmcm	63	1D	2.0166666667
mp-672252	LiEuPS ₄	Tetragonal	I4_1/acd	142	0D	2.098571429
mp-675037	Sm_2EuS_4	Tetragonal	I-42d	122	1D	1.98
mp-721592	Ca ₆ Al ₇ O ₁₆	Cubic	I-43d	220	0D	2.4713
mp-867221	Ce ₃ Ta ₂ N ₆	Tetragonal	I4/mmm	139	1D	2.236363636
mp-867290	TbTe	Hexagonal	P-6m2	187	0D	1.6

Table S2. The statistic on the composed elements of these 51 candidates.

Cation					Anion					
Element	Lanthanide	Alkali metal	Alkali earth metal	Transition metal	III A	IV A	Р	N	VI A	Halogen
Count	25	10	15	25	6	7	6	9	38	3
Percentage	26.6%	10.6%	16%	26.6%	6.4%	7.4%	6.4%	18%	76%	6%

Table S3. The list of the candidates as distance increases.

Distance/ Å	The list of candidates
1.6	$ \begin{array}{l} DyS, TmS, GdTe, Sr_2N, TbS, TbTe, LaSe, HoS, Ca_2N, ErS, Ba_2N, LaS, LuS, BaCrSi_4O_{10}, RbFe_2S_3, SrCrSi_4O_{10} Ba_2FeGe_2O_7, BaFeSi_4O_{10}, Ce_3Ta_2N_6, Ca_6Al_7O_{16} Ce_3Te_4, CeS, CeSe, CrGeTe_3, Tl_3FeCl_5, CrSiTe_3, CsTi_3Si_2P_6O_{25} CsFe_2S_3, CsFe_2Se_3 Cs_3O, Cs_2EuCuCl_6, EuAl_2S_4, EuAl_2Se_4, GdS, InCuTe_2 La_2CeTe_4, LiEuPS_4, Sr_8Fe_3N_8, Li_2Ti_2P_3O_{12}, NaLa_8Se_{12} Nb_2P_3O_{12}, Prl_2, RbIr_6O_{12}, Sm_2EuS_4, Sr_3IrN_3, Sr_3OSN_3, Sr_3RuN_3, Ba_3OSN_3, TiMOP_3O_{12}, TiP_3WO_{12}, Ba_3AlO_4, CeO, Pr_2EuSe_4, Nd_2EuSe_4, CsMoN_2, EuMg_3SiN_4, Rb_2InCuCl_6, Eu_3S_4, CsK_2CoO_2, V_3(Bi_3O_8)_2, Ce_3Se_4, CaNiN, Pr_3(TaN_3)_2, LiTi_2O_4, EuMoO_4 \end{array} $
1.7	$ \begin{array}{l} DyS, TmS, GdTe, Sr_2N, TbS, TbTe, LaSe, HoS, Ca_2N, ErS, Ba_2N, LaS, LuS, BaCrSi_4O_{10}, RbFe_2S_3, SrCrSi_4O_{10} Ba_2FeGe_2O_7, BaFeSi_4O_{10}, Ce_3Ta_2N_6, Ca_6Al_7O_{16} Ce_3Te_4, CeS, CeSe, CrGeTe_3, Tl_3FeCl_5, CrSiTe_3, CsTi_3Si_2P_6O_25 CsFe_2S_3, CsFe_2Se_3 Cs_3O, Cs_2EuCuCl_6, EuAl_2S_4, EuAl_2Se_4, GdS, InCuTe_2 La_2CeTe_4, LiEuPS_4, Sr_8Fe_3N_8, Li_2Ti_2P_3O_{12}, NaLa_8Se_{12} Nb_2P_3O_{12}, Prl_2, RbIr_6O_{12}, Sm_2EuS_4, Sr_3IrN_3, Sr_3OSN_3, Sr_3RuN_3, Ba_3OSN_3, TiMOP_3O_{12}, TiP_3WO_{12}, Ba_3AlO_4, CeO, Pr_2EuSe_4, Nd_2EuSe_4, CsMON_2, EuMg_3SiN_4, Rb_2InCuCl_6, Eu3S4, CsK_2CoO_2, V_3(Bi_3O_8)_2, Ce_3Se_4, CaNiN \end{array} $
1.8	$ \begin{array}{l} DyS, TmS, GdTe, Sr_2N, TbS, TbTe, LaSe, HoS, Ca_2N, ErS, Ba_2N, LaS, LuS, BaCrSi_4O_{10}, RbFe_2S_3, SrCrSi_4O_{10}, Ba_2FeGe_2O_7, BaFeSi_4O_{10}, Ce_3Ta_2N_6, Ca_6Al_7O_{16}, Ce_3Te_4, CeS, CeSe, CrGeTe_3, Tl_3FeCl_5, CrSiTe_3, CsTi_3Si_2P_6O_{25}, CsFe_2S_3, CsFe_2Se_3, Cs_3O, Cs_2EuCuCl_6, EuAl_2S_4, EuAl_2Se_4, GdS, InCuTe_2 La_2CeTe_4, LiEuPS_4, Sr_8Fe_3N_8, Li_2Ti_2P_3O_{12}, NaLa_8Se_{12}, Nb_2P_3O_{12}, Prl_2, RbIr_6O_{12}, Sm_2EuS_4, Sr_3IrN_3, Sr_3OSN_3, Sr_3RuN_3, Ba_3OSN_3, TiMOP_3O_{12}, TiP_3WO_{12}, Ba_3AlO_4, CeO, Pr_2EuSe_4, Nd_2EuSe_4, CsMoN_2, EuMg_3SiN_4, Rb_2InCuCl_6, Eu_3S_4, CsK_2CoO_2, V_3(Bi_3O8)_2, Ce_3Se_4 \end{array} $
1.9	DyS, TmS, GdTe, Sr ₂ N, TbS, TbTe, LaSe, HoS, Ca ₂ N, ErS, Ba ₂ N, LaS, LuS, BaCrSi ₄ O ₁₀ , RbFe ₂ S ₃ , SrCrSi ₄ O ₁₀ , Ba ₂ FeGe ₂ O ₇ , BaFeSi ₄ O ₁₀ , Ce ₃ Ta ₂ N ₆ , Ca ₆ Al ₇ O ₁₆ , Ce ₃ Te ₄ , CeS, CeSe, CrGeTe ₃ , Tl ₃ FeCl ₅ , CrSiTe ₃ , CsTi ₃ Si ₂ P ₆ O ₂₅ , CsFe ₂ S ₃ , CsFe ₂ Se ₃ , Cs ₃ O, Cs ₂ EuCuCl ₆ , EuAl ₂ S ₄ , EuAl ₂ Se ₄ , GdS, InCuTe ₂ La ₂ CeTe ₄ , LiEuPS ₄ , Sr ₈ Fe ₃ N ₈ , Li ₂ Ti ₂ P ₃ O ₁₂ , NaLa ₈ Se ₁₂ , Nb ₂ P ₃ O ₁₂ , PrI ₂ , RbIr ₆ O ₁₂ , Sm ₂ EuS ₄ , Sr ₃ IrN ₃ , Sr ₃ OsN ₃ , Sr ₃ RuN ₃ , Ba ₃ OsN ₃ , TiMoP ₃ O ₁₂ , TiP ₃ WO ₁₂ , Ba ₃ AlO ₄ , CeO, Pr ₂ EuSe ₄ , Nd ₂ EuSe ₄ , CsMoN ₂ , EuMg ₃ SiN ₄ , Rb ₂ InCuCl ₆ , Eu ₃ S ₄ , CsK ₂ CoO ₂
2	$DyS, TmS, GdTe, Sr_2N, TbS, TbTe, LaSe, HoS, Ca_2N, ErS, Ba_2N, LaS, LuS, BaCrSi_4O_{10}, RbFe_2S_3, SrCrSi_4O_{10} Ba_2FeGe_2O_7, BaFeSi_4O_{10}, Ce_3Ta_2N_6, Ca_6Al_7O_{16} Ce_3Te_4, CeS, CeSe, CrGeTe_3, Tl_3FeCl_5, CrSiTe_3, CsTi_3Si_2P_6O_{25} CsFe_2S_3, CsFe_2Se_3 Cs_3O, Cs_2EuCuCl_6, EuAl_2S_4, EuAl_2Se_4, GdS, InCuTe_2 La_2CeTe_4, LiEuPS_4, Sr_8Fe_3N_8, Li_2Ti_2P_3O_{12}, NaLa_8Se_{12} Nb_2P_3O_{12}, Prl_2, RbIr_6O_{12}, Sm_2EuS_4, Sr_3IrN_3, Sr_3OsN_3, Sr_3RuN_3, Ba_3OsN_3, TiMOP_3O_{12}, TiP_3WO_{12}, Ba_3AlO_4, CeO, Pr_2EuSe_4, Nd_2EuSe_4, CsMoN_2, EuMg_3SiN_4, Rb_2InCuCl_6, Eu_3S_4$
2.1	$ \begin{array}{l} DyS, TmS, GdTe, Sr_2N, TbS, TbTe, LaSe, HoS, Ca_2N, ErS, Ba_2N, LaS, LuS, BaCrSi_4O_{10}, RbFe_2S_3, SrCrSi_4O_{10} Ba_2FeGe_2O_7, BaFeSi_4O_{10}, Ce_3Ta_2N_6, Ca_6Al_7O_{16} Ce_3Te_4, CeS, CeSe, CrGeTe_3, Tl_3FeCl_5, CrSiTe_3, CsTi_3Si_2P_6O_{25} CsFe_2S_3, CsFe_2Se_3 Cs_3O, Cs_2EuCuCl_6, EuAl_2S_4, EuAl_2Se_4, GdS, InCuTe_2 La_2CeTe_4, LiEuPS_4, Sr_8Fe_3N_8, Li_2Ti_2P_3O_{12}, NaLa_8Se_{12} Nb_2P_3O_{12}, Prl_2, RbIr_6O_{12}, Sm_2EuS_4, Sr_3IrN_3, Sr_3OsN_3, Sr_3RuN_3, Ba_3OsN_3, TiMOP_3O_{12}, TiP_3WO_{12}, Ba_3AlO_4, CeO, Pr_2EuSe_4, Nd_2EuSe_4, CsMoN_2, EuMg_3SiN_4 \end{array} $
2.2	$DyS, TmS, GdTe, Sr_2N, TbS, TbTe, LaSe, HoS, Ca_2N, ErS, Ba_2N, LaS, LuS, BaCrSi_4O_{10}, RbFe_2S_3, SrCrSi_4O_{10} Ba_2FeGe_2O_7, BaFeSi_4O_{10}, Ce_3Ta_2N_6, Ca_6Al_7O_{16} Ce_3Te_4, CeS, CeSe, CrGeTe_3, Tl_3FeCl_5, CrSiTe_3, CsTi_3Si_2P_6O_{25} CsFe_2S_3, CsFe_2Se_3 Cs_3O, Cs_2EuCuCl_6, EuAl_2S_4, EuAl_2Se_4, GdS, InCuTe_2 La_2CeTe_4, LiEuPS_4, Sr_8Fe_3N_8, Li_2Ti_2P_3O_{12}, NaLa_8Se_{12} Nb_2P_3O_{12}, Prl_2, RbIr_6O_{12}, Sm_2EuS_4, Sr_3IrN_3, Sr_3OsN_3, Sr_3RuN_3, Ba_3OsN_3, TiMOP_3O_{12}, TiP_3WO_{12}, Ba_3AlO_4$
2.3	DyS, TmS, GdTe, Sr ₂ N, TbS, TbTe, LaSe, HoS, Ca ₂ N, ErS, Ba ₂ N, LaS, LuS,BaCrSi ₄ O ₁₀ SrCrSi ₄ O ₁₀ Ba ₂ FeGe ₂ O ₇ , Ca ₆ Al ₇ O ₁₆ Ce ₃ Te ₄ , CeS, CeSe, CrGeTe ₃ , CrSiTe ₃ , CsTi ₃ Si ₂ P ₆ O ₂₅ CsFe ₂ S ₃ ,CsFe ₂ Se ₃ Cs ₃ O,Cs ₂ EuCuCl ₆ , EuAl ₂ S ₄ , EuAl ₂ Se ₄ , GdS,InCuTe ₂ La ₂ CeTe ₄ ,LiEuPS ₄ Li ₂ Ti ₂ P ₃ O ₁₂ , NaLa ₈ Se ₁₂ Nb ₂ P ₃ O ₁₂ , PrI ₂ , RbIr ₆ O ₁₂ , Sm ₂ EuS ₄ , Sr ₃ IrN ₃ , Sr ₃ OsN ₃ , Sr ₃ RuN ₃ , Ba ₃ OsN ₃ ,TiMoP ₃ O ₁₂ , TiP ₃ WO ₁₂ , Ba ₃ AlO ₄
2.4	GdTe, Sr ₂ N, TbS, LaSe, Ca ₂ N, Ba ₂ N, LaS, BaCrSi ₄ O ₁₀ SrCrSi ₄ O ₁₀ Ba ₂ FeGe ₂ O ₇ , Ca ₆ Al ₇ O ₁₆ , CeS, CeSe, CrGeTe ₃ , CrSiTe ₃ , CsTi ₃ Si ₂ P ₆ O ₂₅ CsFe ₂ S ₃ , Cs ₃ O, EuAl ₂ S ₄ , EuAl ₂ Se ₄ , GdS,InCuTe ₂ La ₂ CeTe ₄ ,LiEuPS ₄ Nb ₂ P ₃ O ₁₂ , PrI ₂ , RbIr ₆ O ₁₂ , Sr ₃ IrN ₃ , Sr ₃ OsN ₃ , Sr ₃ RuN ₃ , Ba ₃ OsN ₃ , TiMoP ₃ O ₁₂ , TiP ₃ WO ₁₂ , Ba ₃ AlO ₄
2.5	GdTe, Sr ₂ N, LaSe, Ca ₂ N, Ba ₂ N, LaS, BaCrSi ₄ O ₁₀ SrCrSi ₄ O ₁₀ Ca ₆ Al ₇ O ₁₆ , CeSe, CrGeTe ₃ , CrSiTe ₃ , Cs ₃ O, EuAl ₂ S ₄ , EuAl ₂ Se ₄ , InCuTe ₂ La ₂ CeTe ₄ , LiEuPS ₄ Nb ₂ P ₃ O ₁₂ , Prl ₂ , RbIr ₆ O ₁₂ , Sr ₃ IrN ₃ , Sr ₃ OsN ₃ , Sr ₃ RuN ₃ , Ba ₃ OsN ₃ , TiMoP ₃ O ₁₂ , TiP ₃ WO ₁₂ , Ba ₃ AlO ₄
2.6	$ GdTe, Sr_2N, LaSe, Ca_2N, Ba_2N, Ca_6Al_7O_{16}, CrSiTe_3, Cs_3O, EuAl_2S_4, EuAl_2Se_4, InCuTe_2 La_2CeTe_4, Nb_2P_3O_{12}, PrI_2, Sr_3OsN_3, Sr_3RuN_3, Ba_3OsN_3, Ba_3AlO_4 $
2.7	Sr ₂ N, Ca ₂ N, Ba ₂ N, Ca ₆ Al ₇ O ₁₆ , CrSiTe ₃ , Cs ₃ O, EuAl ₂ S ₄ , Sr ₃ OsN ₃ , Sr ₃ RuN ₃ , Ba ₃ AlO ₄
2.8	Sr ₂ N, Ca ₂ N, Ba ₂ N, Ca ₆ Al ₇ O ₁₆ , Cs ₃ O, EuAl ₂ S ₄ , Sr ₃ OsN ₃ , Sr ₃ RuN ₃ , Ba ₃ AlO ₄
2.9	Sr ₂ N, Cs ₃ O, EuAl ₂ S ₄

Figure S1: Ba₃OsN₃(mp-1029640). Symmetry: Hexagonal; P6_3/m (number 176).

Figure S2: Sr₃OSN₃(mp-1029686). Symmetry: Hexagonal; P6_3/m (number 176).

Firuge S3: Sr₃IrN₃(mp-1029741). Symmetry: Hexagonal; P6_3/m (number 176).

Figure S4: Sr₃RuN₃(mp-1029750). Symmetry: Hexagonal; P6_3/m (number 176).

Figure S5: CeS(mp-1096), LaSe(mp-1161), HoS(mp-1240), TbS(mp-1610), ErS(mp-1623), TmS(mp-1766), LaS(mp-2350), DyS(mp-2470), CeSe(mp-2563), GdS(mp-510402), GdTe(mp-574283) and LuS(mp-656). Symmetry: Cubic; Fm-3m (number 225).

Figure S6: EuAL₂Se₄(mp-1103552). Symmetry: Orthorombic; Cccm (number 66).

Figure S7: EuAl₂S₄(mp-1103889). Symmetry: Orthorombic; Cccm (number 66).

Figure S8: Cs₂EuCuCl₆(mp-1113208). Symmetry: Cubic; Fm-3m (number 225)..

Figure S9: Ba₂FeGe₂O₇(mp-1190820). Symmetry: Tetragonal; P-42_1m (number 113).

Figure S10: Li₂Ti₂P₃O₁₂(mp-1197890). Symmetry: Orthorhombic; Pbcn (number 60).

Figure S11: Ba₃AlO₄(mp-1199363). Symmetry: Orthorhombic; Pnma (number 62).

Figure S12: RbIr₆O₁₂(mp-1219790). Symmetry: Tetragonal; I4/m (number 87).

Figure S13: La₂CeTe₄(mp-1226163). Symmetry: Tetragonal; I-42d (number 122).

Figure S14: TiMoP₃O₁₂(mp-1044323). Symmetry: Trigonal; R3c (number 161).

Figure S15: TiP₃WO₁₂(mp-1044343). Symmetry: Trigonal; R3c (number 161).

Figure S16: Sr₂N(mp-1245). Symmetry: Trigonal; R-3m (number 166).

Figure S17: Nb₂P₃O₁₂(mp-17242). Symmetry: Trigonal; R-3c (number 167).

Figure S18: Ba₂N(mp-1892). Symmetry: Trigonal; R-3m (number 166).

 $Figure \ S19: \ BaFeSi_4O_{10}(mp-19165). \ Symmetry: \ Tetragonal; \ P4/ncc \ (number \ 130).$

Figure S20: SrCrSi₄O₁₀(mp-19508). Symmetry: Tetragonal; P4/ncc (number 130).

Figure S21: BaCrSi₄O₁₀(mp-19518). Symmetry: Tetragonal; P4/ncc (number 130).

Figure S22: InCuTe₂(mp-22261). Symmetry: Tetragonal; I-42d (number 122).

Figure S23: Ce₃Te₄(mp-22422). Symmetry: Cubic; I-43d (number 130).

Figure S24: Ca₂N(mp-₂₆₈₆). Symmetry: Trigonal; R-3m (number 166).

Figure S25: Tl₃FeCl₅(mp-27334). Symmetry: Tetragonal; I4/mcm (number 140).

Figure S26: NaLa₈Se₁₂(mp-37312). Symmetry: Tetragonal; I-42d (number 122).

Figure S27: CrSiTe₃(mp-3779). Symmetry: Trigonal; R-3 (number 148).

Figure S28: RbFe₂S₃(mp-3787). Symmetry: Orthorhombic; Cmcm (number 63)

Figure S29: Cs₃O(mp-510262). Symmetry: Hexagonal; P6_3/mcm (number 193)

Figure S30: CsTi₃Si₂P₆o₂₅(mp-541318). Symmetry: Trigonal; P-31c (number 163)

Figure S31: CrGeTe₃(mp-541449). Symmetry: Trigonal; R-3 (number 148)

Figure S32: CsFe₂S₃(mp-542475). Symmetry: Orthorhombic; Cmcm (number 63).

Figure S33: PrI₂(mp-569673). Symmetry: Cubic; F-43m (number 216)

Figure S34: Sr₈Fe₃N₈(mp-573523). Symmetry: Monoclinic; C2/m (number 12).

Figure S35: CsFe₂Se₃(mp-662563). Symmetry: Orthorhombic; Cmcm (number 63).

Figure S36: LiEuPS₄(mp-672252). Symmetry: Tetragonal; I4_1/acd (number 142).

Figure S37: Sm₂EuS₄(mp-675037). Symmetry: Tetragonal; I-42d (number 122).

Figure S38: Ca₆Al₇O₁₆(mp-721592). Symmetry: Cubic; I-43d (number 220).

Figure S39: Ce₃Ta₂N₆(mp-867221). Symmetry: Tetragonal; I4/mmm (number 139).

Figure S40: TbTe(mp-867290). Symmetry: Hexagonal; P-6m2 (number 187).