Electronic supplementary information

Near-Unity and High Anti-Thermal Quenching Red Luminescence from One-Dimensional Hybrid Manganese Chloride for Efficient and Stable White Light-Emitting Diodes

Binbin Su,*^a Maxim S. Molokeev,^{bcd} Ran Chen,^a Tao Zhang^a

a. School of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, Shaanxi, PR China.

b. Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia

c. Department of Engineering Physics and Radioelectronics, Siberian Federal University, Krasnoyarsk 660041, Russia

d. Research and Development Department, Kemerovo State University, Kemerovo, 650000, Russia

*Corresponding Author BinBinSu@xust.edu.cn

Chemical formula	$C_4H_{12}Cl_3MnN$
Molecular weight	235.44
Temperature (K)	293
Space group, Z	P6 ₃ / <i>m</i> , 2
<i>a</i> (Å)	9.1504 (6)
<i>c</i> (Å)	6.4984 (4)
<i>V</i> (Å ³)	471.21 (7)
ρ _{calc} (g/cm³)	1.659
μ (mm ⁻¹)	2.176
Reflections measured	3710
Reflections independent	445
Reflections with $F > 4\sigma(F)$	393
2θ _{max} (°)	58.44
<i>R</i> _{int}	0.0623
Number of refinement parameters	21
$R_1 [F_o > 4\sigma(F_o)]^a$	0.0446
wR ₂ ^b	0.1020
Goof	1.130
Δρ _{max} (e/ų)	0.482
Δρ _{min} (e/ų)	-0.687
$(\Delta/\sigma)_{max}$	<0.001
Extinction coefficient (SHELXL 2014/7)	1.43 (9)

Table S1. The crystal structure parameters of (TMA)MnCl₃

[a] $R_1 = \sum \|F_o| - |F_c|| / \sum |F_o|$, [b] $wR_2 = [\sum w(F_o^2 - F_c^2)^2 / \sum w(F_o^2)^2]^{1/2}$.

Mn—Cl	2.5620 (7)	N—C16	1.438 (7)
Mn—Cl1	2.5620 (7)	N—C17	1.438 (7)
Mn—Cl2	2.5620 (7)	N—C18	1.438 (7)
Mn—Cl3	2.5620 (7)	N—C2	1.562 (19)
Mn—Cl4	2.5620 (7)	N—C2	1.562 (19)
Mn—Cl5	2.5620 (7)		

Table S2. The main bond lengths (Å) of (TMA)MnCl₃

Symmetry codes: (i) x-y, x-1, -z+1; (ii) -x+y+2, -x+1, z; (iii) -x+2, -y, -z+1; (iv) y+1, -x+y+1, -z+1; (v) -

y+1, *x*-*y*-1, *z*; (vi) -*x*+2, -*y*, *z*+1/2; (vii) -*y*+1, *x*-*y*, *z*; (viii) -*x*+*y*+1, -*x*+1, *z*; (ix) *x*, *y*, -*z*+1/2.

Atom	Atom	Atom	Angle
Cl	Mn	Cl1	95.922(19)
CI2	Mn	Cl3	95.92(2)
Cl4	Mn	CI5	95.92(2)
Cl	Mn	Cl2	84.078(19)
Cl	Mn	CI5	84.08(2)
Cl1	Mn	CI2	180.0
Cl1	Mn	CI3	84.08(2)
Cl	Mn	Cl4	180.0
Cl4	Mn	CI3	84.08(2)
Cl1	Mn	Cl4	84.079(19)
Cl1	Mn	CI5	95.92(2)
CI2	Mn	Cl4	95.921(19)
CI3	Mn	CI5	180.00(3)
Cl	Mn	CI3	95.92(2)
Cl2	Mn	CI5	84.08(2)

Table S3. The main bond angles (°) of (TMA)MnCl₃

Atom	x	У	Ζ	$U_{\rm iso}^*/U_{\rm eq}$	Occ.
Mn	1.0000	0.0000	0.5000	0.0284 (4)	1
Cl	0.84992 (11)	0.09811 (12)	0.7500	0.0357 (4)	1
Ν	0.6667	0.3333	0.2500	0.0318 (11)	1
C1	0.6226 (12)	0.1589 (9)	0.2500	0.150 (5)	1
H1A	0.5020	0.0887	0.2500	0.180*	1
H1B	0.6682	0.1358	0.1294	0.180*	0.25
H1C	0.6682	0.1358	0.3706	0.180*	0.25
C2	0.6667	0.3333	0.010 (3)	0.182 (17)	0.5
H2A	0.6944	0.4431	-0.0396	0.219*	0.5
H2B	0.7488	0.3056	-0.0396	0.219*	0.25
H2C	0.5569	0.2512	-0.0396	0.219*	0.25

Table S4. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (${\rm \AA}^2$)

Table S5. Hydrogen-bond geometry in the $(C_4H_{12}N)MnCl_3$ structure (Å, °)

D—H	d(D—H)	d(H…A)	∠ D—H…A	D…A	А	Transformation for A atom
C(1)—H(1A)	0.96	2.79	177	3.749(11)	Cl	1-x,-y,-1/2+z
C(2)—H(2A)	0.96	2.84	177	3.7283(2)	Cl	1-y, x-y, -1+z

Temperatures (K)	Lifetimes (ms)
80	0.901
100	0.884
120	0.868
140	0.845
160	0.825
180	0.795
200	0.764
220	0.736
240	0.707
260	0.678
280	0.652
300	0.623

Table S6. PL lifetimes of the (TMA)MnCl₃ SCs under different temperatures

Table S7. CIE 1931 color coordinates of fabricated white LED device under various operating currents.

Operating currents (mA)	CIE
20	(0.382, 0.382)
40	(0.381, 0.383)
60	(0.381, 0.383)
80	(0.380, 0.384)
100	(0.379, 0.384)
120	(0.378, 0.384)
160	(0.378, 0.384)
200	(0.377, 0.385)
240	(0.375, 0.385)
280	(0.375, 0.385)