## **Supporting information**

## Band alignment of TiO<sub>2</sub> through controling Cl content for highefficiency perovskite solar cells

Long Ji,<sup>a,</sup> Ting Zhang,<sup>a</sup> Shibin Li,<sup>a\*</sup>

<sup>a</sup>School of Optoelectronic Science and Engineering, University of Electronic Science and

Technology of China (UESTC), Chengdu, Sichuan 610054, China

\*Corresponding author. E-mail: shibinli@uestc.edu.cn.



Figure S1 Diagram of TiO<sub>2</sub> preparation process



Figure S2 TiO<sub>2</sub> absorption and energy band changes at different growth times. (a) TiO<sub>2</sub> absorption plots at different growth times. (b) TiO<sub>2</sub> Tauc-plot plots with different growth times.



Figure S3 XPS test diagram of TiO<sub>2</sub> surface with different growth time. (a) 1.5 h. (b)1+1 h.



Figure S4 The electron mobility of  $\mathrm{TiO}_2$  was evaluated using the SCLC model.



Figure S5 SEM images of  $TiO_2$  surface at different growth times. (a)1 h. (b)1+0.5 h. (c)1.5 h. (d)1+1 h.



Figure S6 SEM images of  $TiO_2$  growing at different times. (a)1 h. (b)1+0.5 h. (c)1.5 h. (d)1+1 h.



Figure S7 PH value of TiO<sub>2</sub> solution grown at different times

Table S1 Average carrier lifetime of perovskite films prepared on 1 h and 1+0.5 h TiO<sub>2</sub> films

| Growth time | $\tau_1/ns(A_1)$ | $\tau_2/ns(A_2)$ | $\tau_{ave}/ns$ |
|-------------|------------------|------------------|-----------------|
| 1 h         | 92.44 (0.092)    | 890.62 (0.876)   | 882.01          |
| 1+0.5 h     | 83.63 (0.151)    | 629.33 (0.799)   | 615.96          |