Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supporting information for:

Cation placement control in double-perovskite GdBaCo₂O₆ and its impact on magnetism via spin-state modification

Tsukasa Katayama^{1,2*}, Kento Magara³, Shiro Sakai⁴, Yijie Zeng⁴, Akira Chikamatsu⁵, Tetsuya

Hasegawa³

¹Research Institute for Electronic Science, Hokkaido University, Sapporo, Hokkaido, 001-0020,

Japan

²JST-PRESTO, Kawaguchi, Saitama 332-0012, Japan

³Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

⁴Center for Emergent Matter Science, RIKEN, Wako, Saitama 351-0198, Japan

⁵Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku,

Tokyo 112-8610, Japan

E-mail: katayama@es.hokudai.ac.jp

Figure S1. Reciprocal space mapping (RSM) and the q_x -direction dependence of the peak intensity of the films obtained from the RSM for the as-grown films on (a,c) STO and (b,d) LSGO substrates.

Figure S2. (a) Out-of-plane and (b) in-plane XRD $2\theta - \theta$ patterns for the GdBaCo₂O_{5.5} films on the SrTiO₃(001), NdGaO₃(110), and LaSrGaO₄(001) substrates. We also prepared GdBaCo₂O_{5.5} thin films on NdGaO3(110) substrates (NGO) and conducted out-of-plane and in-plane XRD measurements using the same XRD equipment as for the other films grown on STO and LSGO. NGO has a rectangular in-plane lattice with lattice parameters of [1-10] = 7.729 Å and [001] = 7.710 Å. Because of this, the GdBaCo₂O_{5.5} film exhibited an orthorhombic structure; the in-plane lattice was fixed in the $[001]_{NGO}$ direction but relaxed in the $[1-10]_{NGO}$ direction, resulting in out-of-plane (7.811 Å) and in-plane (7.729 and 7.635 Å) lattice constants. Due to these anisotropic lattice constants, the film on NGO showed both the 010 and 001 superlattice peaks in the out-of-plane and in-plane $[001]_{NGO}$ $2\theta - \theta$ patterns, respectively. On the other hand, no superlattice peak was detected in the in-plane $[1-10]_{NGO}$ pattern. Thus, when high ionic ordering exists in the films, superlattice peaks can be observed using our XRD system. However, we utilized our laboratory's XRD equipment without employing techniques such as synchrotron radiation. Therefore, while the degree of ordering is low, there is a possibility that the films still have some short-range ionic ordering.

Figure S3. Reciprocal space mapping (RSM) and the q_x -direction dependence of the peak intensity of the films obtained from the RSM for the oxidized films on (a,c) STO and (b,d) LSGO substrates.

Figure S4. XAS Co *L*-edge spectra for the as-grown and oxidized GdBaCo₂O_x films grown on STO substrates. The figure also includes the reference spectra of Sr₂CoO₃Cl with Co³⁺ and SrCoO₃ with Co⁴⁺ [Guillou, F. *et al.*, *Phys. Rev. B* 2013, *87*, 115114. Potze, R. H. *et al.*, *Phys. Rev. B* 1995, *51*, 11501–11506. Katayama, T. *et al.*, *Chem. Mater.* 2023, *35*, 1295.]. The photon energy of the Co L_3 -edge peak for the as-grown film closely matches that of Sr₂CoO₃Cl, indicating that Co is trivalent in the as-grown film, thus confirming the chemical composition as GdBaCo₂O_{5.5}. Conversely, the photon energy of the Co L_3 -edge peak for the oxidized film is centered between those of Sr₂CoO₃Cl and SrCoO₃, suggesting a mixture of Co³⁺ and Co⁴⁺ in the oxidized film, and hence indicating the composition as GdBaCo₂O₆ with Co^{3.5+}. It is noted that determining Co spin states from XAS involves several challenges: (1) The XAS spectral shape depends not only on the spin state but also on the coordination environment. Since GdBaCo₂O₆ has distorted CoO₆ octahedra, it is difficult to compare with undistorted compounds like LaCoO₃. (2) Among the six possible states (Co³⁺ high-spin (HS), Co³⁺ intermediate-spin (IS), Co³⁺ low-spin (LS), Co⁴⁺ HS, Co⁴⁺ IS, and Co⁴⁺ LS), some reference data are still not available. Due to these reasons, it is extremely difficult to determine the spin state from XAS alone.

Figure S5. The relationship between the *c*-axis length and energy of $GdBaCo_2O_{5.5}$ and $GdBaCo_2O_6$. Here, the *a*- and *b*-axis lengths were fixed at 3.905 Å.

Figure S6. In-plane and out-of-plane M-H curves for the (a) A-site-ordered x = 6 film at 2 K and (b) A-site-disordered x = 6 film at 5 K.

Table S1. The intensity ratio of the 001 to 006 peak (I_{001}/I_{006}) for the as-grown and oxidized films on STO substrates, together with the simulation results.

	Experimental		Simulation from the DFT calculation results	
	As-grown film	oxidized film on	GdBaCo ₂ O _{5.5} film on	GdBaCo ₂ O ₆ film on
	on STO	STO	STO	STO
I ₀₀₁ /I ₀₀₆	74.0 %	103 %	87.6 %	176 %