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Fig. S1: Maps of electron localization function (ELF) for naayer TX (X = S, Se, Te) over the (110)

plane, which is renormalized to values between 0.0 for yamgscharge and 1.0 for completely localized

Wm [1], whereK denotes the curvature of electronic pair

density for electrons with the identical spi{r) represents the electron density at positipandK[o(r)] is

charge. The ELF is defined as EE-

theK value in a uniform electron gas with densitfr). Values greater than 0.5 correspond to covalent bonds
or core electrons, values less than 0.5 refer to ionic bam$yalue equal to 0.5 implies a uniform electron
gas with metallic bond features. It is clear that the shaledtron interactions can be found between two
vertically arranged chalcogen atoms, and thusXf¢ bonds show the weak covalent bonding nature. On

the other hand, the neighboring Tl akdatoms display an ionic bonding character.
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Fig. S2: Phonon dispersions for monolayeXTK = S, Se, Te) derived from density functional perturbation
theory [2] on a 3x 3 x 1 supercell as implemented in the PHONOPY package [3]. Natethe phonon
spectrum in monolayer TIS exhibits minuscule imaginarg@i@ncies in the vicinity of th& point, which
arises from the numerical uncertainties in first-pringpdalculations rather than the real instability of this
material. A similar artifact has been observed as well ieo#D materials such as the well-known graphene
system [4]. These spurious imaginary modes can be elindriateadopting larger supercells and denser

k-point grids at the expense of harsher computational cb§ts |
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Fig. S3: Evolution of potential energies for monolayeKTK = S, Se, Te) from 4.0 pab initio molecular
dynamics simulations with a time step of 1.0 fs on & B x 1 supercell at 300 K with a Nosé-Hoove
thermostat [6]. The insets display the corresponding srapsat the end of each simulation, all of which

can quickly recover their initial equilibrium configuratie after performing geometry optimization.
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Fig. S4: Orbital-resolved band structures of monolayeraiiie HSEQO6- SOC level. The size of symbols

is proportional to the corresponding orbital weight andRleemi level is set to zero.
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Fig. S5: Orbital-resolved band structures of monolayee®@&he HSE06 SOC level. The size of symbols

is proportional to the corresponding orbital weight andRleemi level is set to zero.
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Fig. S6: (a) Berry curvatures for UVB and LCB over the 2D Builin zone as well as momentum-resolved

normalized circular polarization for optical transitiorofn UVB to LCB in monolayer TIS. Note that

Qy(+K) = —Qy(-K) = 9 A% andQ.(+K) = -Qc(-K) = -1 A2, (b) Same as those in (a) but for monolayer

TISe whereQ,(+K) = —Qy(-K) = 22 A2 andQ¢(+K) = —Q¢(-K) = —21 A2, It is clear that the Berry

curvature at the-K valleys is larger in monolayer TISe than in TIS on accounstodng SOC interaction

arising from heavier chalcogen atoms. In either systemgiticellar dichroism is perfectly valley-selective

owing to the protection o€;3 rotational symmetry, implying that the frequency-spedift-handed ¢*)

and right-handd™) circularly polarized light can exclusively excite th& and—K valley, respectively. As

a consequence, the population imbalance of charge carrigrs two valleys can be generated via selective

optical pumping, which is essential to achieve the changie, and valley Hall &ects simultaneously.
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Fig. S7: Spin-split band structures of monolayer TIS at tf&EH6+ SOC level under dierent biaxial
strains ranging from-5% to +5% with the— and+ symbols referring respectively to the compressive and

tensile strains. Also shown are the bandgap and valley gfittiregs in the conduction and valence bands.
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Fig. S8: Spin-split band structures of monolayer TISe atHIs#&£06+ SOC level under dierent biaxial
strains ranging from-5% to +5% with the— and+ symbols referring respectively to the compressive and

tensile strains. Also shown are the bandgap and valley gfittiregs in the conduction and valence bands.
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Fig. S9: Spin-split band structures of monolayer TITe att®E06+ SOC level under dierent biaxial
strains ranging from-5% to +5% with the— and+ symbols referring respectively to the compressive and

tensile strains. Also shown are the bandgap and valley gfittiregs in the conduction and valence bands.
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