Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supporting Information for

Alkaline-earth metal embedded expanded phthalocyanine nanosheets with direct band gap and high power conversion efficiency

Cui Wang and Li-Ming Yang*

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China. (Email: Lmyang@hust.edu.cn)

Table S1. The lattice parameters (Å), space groups and point groups of optimized crystal structures of M₂Pc monolayers.

Table S2. Calculated elastic constants (*C*ij, N/m), Layer modulus (*γ*, N/m), Young's modulus (*Y*, N/m), Poisson's ratio (*ʋ*) of M2Pc nanosheets.

Table S3. Calculated lattice parameters (Å), crystal structures for Mg₂Pc monolayer under biaxial strain from −5% to 10%.

Table S4. Calculated lattice parameters (Å), crystal structures for Ca₂Pc monolayer under biaxial strain from −5% to 10%.

Table S5. Calculated lattice parameters (Å), crystal structures for Sr₂Pc monolayer under biaxial strain from -5% to 10%.

Table S6. Calculated lattice parameters (Å), crystal structures for Ba₂Pc monolayer under biaxial strain from -5% to 10%.

Table S7. Calculated electronic band structures for Be₂Pc monolayer under biaxial strain from −5% to 10%.

Table S8. Calculated electronic band structures for Mg₂Pc monolayer under biaxial strain from −5% to 10%.

Table S9. Calculated electronic band structures for Ca₂Pc monolayer under biaxial strain from −5% to 10%.

Table S10. Calculated electronic band structures for Sr₂Pc monolayer under biaxial strain from −5% to 10%.

Table S11. Calculated electronic band structures for Ba₂Pc monolayer under biaxial strain from −5% to 10%.

Table S12. Computed effective mass (m^*, m_0) , deformation potential constant (E_1, eV) , 2D elastic modulus $(C_{2D}, N/m)$, and carrier mobility $(\mu, cm^2 V^{-1} s^{-1})$ of electrons and holes along *x* and *y* directions for the M2Pc sheets at 300 K.

Table S13. Calculated band gap of the donor (E_g) , conduction band offset (ΔE_c) , open circuit voltage (V_{oc}) , the ratio of short circuit current density to AM1.5 solar energy flux (J_{sc}/P_{solar}) and PCE of heterostructures.

Figure S1. Variations of temperature and energy against the time for AIMD simulations of the Be₂Pc monolayer.

Figure S2. Variations of temperature and energy against the time for AIMD simulations of the Mg₂Pc monolayer.

Figure S3. Variations of temperature and energy against the time for AIMD simulations of the Ca₂Pc monolayer.

Figure S4. Variations of temperature and energy against the time for AIMD simulations of the Sr₂Pc monolayer.

Figure S5. Variations of temperature and energy against the time for AIMD simulations of the Ba₂Pc monolayer.

Figure S6. Calculated electronic band structures and corresponding total density of states (DOS) based for (a) Mg₂Pc, (b) Ca₂Pc, (c) Sr₂Pc and (d) Ba₂Pc monolayers at the PBE level. The Fermi level (E_F) is set to zero and marked with the dotted line.

Figure S7. Calculated band structures of (a) Mg₂Pc, (b) Ca₂Pc, (c) Sr₂Pc and (d) Ba₂Pc monolayers at the HSE06 level. The Fermi level is set at 0 eV.

Figure S8. The partial charge density distribution of the CBM (blue) and VBM (red) for the M₂Pc monolayers. The isosurface value is 0.003 e/Bohr³.

Figure S9. Calculated PDOS of the 2D M2Pc monolayers in the range of −1.5 to 1.5 eV. Rows represent the PDOS contributions from different types of atoms. The last row shows TDOS for each material.

Figure S10. The evolution of PDOS on different atoms near the Fermi level versus biaxial strain from −5% to 10% for Be₂Pc monolayer. The Fermi level has been set to 0 eV.

Figure S11. The evolution of PDOS on different atoms near the Fermi level versus biaxial strain from −5% to 10% for Mg2Pc monolayer. The Fermi level has been set to 0 eV.

Figure S12. The evolution of PDOS on different atoms near the Fermi level versus biaxial strain from −5% to 10% for Ca2Pc monolayer. The Fermi level has been set to 0 eV.

Figure S13. The evolution of PDOS on different atoms near the Fermi level versus biaxial strain from −5% to 10% for Sr₂Pc monolayer. The Fermi level has been set to 0 eV.

Figure S14. The evolution of PDOS on different atoms near the Fermi level versus biaxial strain from −5% to 10% for Ba2Pc monolayer. The Fermi level has been set to 0 eV.

Table S2. Calculated elastic constants (*C*ij, N/m), Layer modulus (*γ*, N/m), Young's modulus (*Y*, N/m), Poisson's ratio (*ʋ*) of M2Pc nanosheets.

Table S5. Calculated lattice parameters (Å), crystal structures for Sr₂Pc monolayer under biaxial strain from −5% to 10%.

Strain	$-5%$	$-4%$	$-3%$	-2%	-1%	0%
Lattice	$a = 14.49 \text{ Å}$ $b = 18.54 \text{ Å}$	$a = 14.64 \text{ Å}$ $b = 18.73 \text{ Å}$	$a = 14.79 \text{ Å}$ $b = 18.93 \text{ Å}$	$a = 14.945 \text{ Å}$ $b = 19.125 \text{ Å}$	$a = 15.10 \text{ Å}$ $b = 19.32 \text{ Å}$	$a = 15.25 \text{ Å}$ $b = 19.52 \text{ Å}$
constant	$c = 15.58 \text{ Å}$	$c = 15.58 \text{ Å}$	$c = 15.63 \text{ Å}$	$c = 15.58 \text{ Å}$	$c = 15.63 \text{ Å}$	$c = 15.58 \text{ Å}$
Sr ₂ Pc		72	72			Loc
Strain	1%	2%	3%	4%	5%	
Lattice	$a = 15.40 \text{\AA}$	$a = 15.55 \text{ Å}$	$a = 15.71 \text{ Å}$	$a = 15.86 \text{ Å}$	$a = 16.01 \text{ Å}$	
constant	$b = 19.71 \text{ Å}$ $c = 15.58 \text{ Å}$	$b = 19.90 \text{ Å}$ $c = 15.58 \text{ Å}$	$b = 20.10 \text{ Å}$ $c = 15.58 \text{ Å}$	$b = 20.29 \text{ Å}$ $c = 15.58 \text{ Å}$	$b = 20.49 \text{ Å}$ $c = 15.58 \text{ Å}$	
Sr ₂ Pc	RO	water	recented	Louiseaudol Recorded	Louise of model	
Strain	6%	7%	8%	9%	10%	
Lattice constant	$a = 16.17 \text{ Å}$ $b = 20.69 \text{ Å}$	$a = 16.32 \text{ Å}$ $b = 20.88 \text{ Å}$	$a = 16.47 \text{ Å}$ $b = 21.08 \text{ Å}$	$a = 16.62 \text{ Å}$ $b = 21.27 \text{ Å}$	$a = 16.77 \text{ Å}$ $b = 21.46 \text{ Å}$	
Sr ₂ Pc	$c = 15.58 \text{ Å}$ Louis ROCKLON	$c = 15.58 \text{ Å}$ Logicon de Logicon de l'	$c = 15.58 \text{ Å}$ Louise de Louiseau de l'	$c = 15.58 \text{ Å}$ Le dimension d'éducation.	$c = 15.58 \text{ Å}$ Louisand Journant of	

Table S7. Calculated electronic band structures for Be₂Pc monolayer under biaxial strain from −5% to 10%.

Table S9. Calculated electronic band structures for Ca₂Pc monolayer under biaxial strain from −5% to 10%.

Table S11. Calculated electronic band structures for Ba₂Pc monolayer under biaxial strain from −5% to 10%.

Table S12. Computed effective mass (m^*, m_0) , deformation potential constant (E_1, eV) , 2D elastic modulus $(C_{2D}, N/m)$, and carrier mobility $(\mu, cm^2 V^{-1} s^{-1})$ of electrons and holes along *x* and *y* directions for the M2Pc sheets at 300 K.

Structure	carrier type	m_x	\overline{m}_y	E_{1x}	E_{1y}	C_{2D-x}	$C_{\text{2D-y}}$	μ _x	μ_y
Be ₂ Pc	electron	0.49	0.45	0.52	0.58	64.92	61.24	19782.18	20597.23
	hole	4.02	2.59	4.59	1.20	64.92	61.24	8.95	23.61
	electron	0.57	0.57	1.98	1.63	54.59	56.55	1174.43	1079.76
Mg ₂ Pc	hole	3.17	1.65	1.41	1.59	54.59	56.55	70.27	144.36
	electron	0.55	0.44	3.54	1.61	49.45	47.65	682.49	579.20
$Ca2$ Pc	hole	3.69	1.37	1.70	1.97	49.45	47.65	35.95	103.12
	electron	0.56	0.45	1.91	1.55	47.19	44.94	1227.48	1369.72
Sr ₂ Pc	hole	3.17	1.21	1.64	1.89	47.19	44.94	49.51	137.94
	electron	0.57	0.48	1.91	1.56	45.58	43.04	1110.55	1193.05
Ba ₂ Pc	hole	3.46	1.20	1.55	2.07	45.58	43.04	38.15	125.31

Table S13. Calculated band gap of the donor (E_g) , conduction band offset (ΔE_c), open circuit voltage (V_{oc}), the ratio of short circuit current density to AM1.5 solar energy flux (J_{sc}/P_{solar}), and PCE of heterostructures.

Figure S1. AIMD simulations results (include the final snapshot, the evolution of total energy and temperature versus the simulation time) for the Be₂Pc monolayers at 400, 600, 800 and 1000 K, respectively.

Figure S2. AIMD simulations results (include the final snapshot, the evolution of total energy and temperature versus the simulation time) for the Mg₂Pc monolayers at 400, 600 and 800 K, respectively.

Figure S3. AIMD simulations results (include the final snapshot, the evolution of total energy and temperature versus the simulation time) for the Ca₂Pc monolayers at 400, 600 800 and 1000 K, respectively.

Figure S4. AIMD simulations results (include the final snapshot, the evolution of total energy and temperature versus the simulation time) for the Sr₂Pc monolayers at 400, 600 800 and 1000 K, respectively.

Figure S5. AIMD simulations results (include the final snapshot, the evolution of total energy and temperature versus the simulation time) for the Ba₂Pc monolayers at 400, 600 800 and 1000 K, respectively.

Figure S6. Calculated electronic band structures and corresponding total density of states (DOS) based for (a) Mg₂Pc, (b) Ca₂Pc, (c) Sr₂Pc and (d) Ba₂Pc monolayers at the PBE level. The Fermi level (E_F) is set to zero and marked with the dotted line.

Figure S7. Calculated band structures of (a) Mg₂Pc, (b) Ca₂Pc, (c) Sr₂Pc and (d) Ba₂Pc monolayers at the HSE06 level. The Fermi level is set at 0 eV.

Figure S8. The partial charge density distribution of the CBM (blue) and VBM (red) for the M₂Pc monolayers. The isosurface value is 0.003 e/Bohr³.

Figure S9. Calculated PDOS of the 2D M₂Pc monolayers in the range of −1.5 to 1.5 eV. Rows represent the PDOS contributions from different types of atoms. The last row shows TDOS for each material.

Figure S10. The evolution of PDOS on different atoms near the Fermi level versus biaxial strain from −5% to 10% for Be₂Pc monolayer. The Fermi level has been set to 0 eV.

Figure S11. The evolution of PDOS on different atoms near the Fermi level versus biaxial strain from -5% to 10% for Mg₂Pc monolayer. The Fermi level has been set to 0 eV.

Figure S12. The evolution of PDOS on different atoms near the Fermi level versus biaxial strain from −5% to 10% for Ca2Pc monolayer. The Fermi level has been set to 0 eV.

Figure S13. The evolution of PDOS on different atoms near the Fermi level versus biaxial strain from −5% to 10% for Sr₂Pc monolayer. The Fermi level has been set to 0 eV.

Figure S14. The evolution of PDOS on different atoms near the Fermi level versus biaxial strain from −5% to 10% for Ba₂Pc monolayer. The Fermi level has been set to 0 eV.