

16

FeCo-terminated

O-terminated

- 17 Figure S2. Crystal structures of (a) FeCo-terminated 1UC, (b) FeCo-terminated 2UC, (c) O-terminated 1UC, and O-
- 18 terminated 2UC CFO systems.
- 19

21 **Figure S3.** Ferrimagnetic configurations in Fe-terminated (a) 1UC, (b) 2UC, FeCo-terminated (d) 1UC, and (d) 2UC 22 thin films.

29 Figure S5. Spin projected band structure after including the SOC (a) 1UC, and (b) 2UC CFO structures with Fe-

30 terminations.

33 Figure S6. Band structure of (a) 1UC, (b) 2UC without SOC, and (c) 1UC with SOC in FeCo-termination.

34

36 Figure S7. SOC matrix analysis of (a) – (c) Co, Fe_{oct} , and Fe_{tet} in 1UC thin film, and (d) – (f) Co, Fe_{oct} , and Fe_{tet} in 2UC

37 thin film with FeCo-termination.

Figure S7 (a) – (f) in the SI illustrates the SOC matrix elements of the Co, Fe_{oct} , and Fe_{tet} atoms in 1UC and 2UC CFO with FeCo-termination. Here the positive and negative values correspond to contributions to the out-of-plane and in-plane MAE. In all the atoms of both thin film systems, the dominant contribution to the in-plane MAE comes from the SOC in the $(d_{x^2-y^2} - d_{xy})$ orbitals. The SOC between $(d_{xz}-d_{xy})$ on the other hand produces a small out-of-plane contribution also. Nonetheless, the in-plane contribution dominated and we found in-plane anisotropy of -169 μ eV/atom and -84 μ eV/atom in both systems respectively.

44 **Table S1** Exchange interaction (J), single-ion magnetic anisotropy (k_2) , magnetic moment (m_z) , and Curie temperature

45 (T_c) in bulk and thin film CFO structures.

Systems/parameters	J (x10 ⁻²¹ J)	k ₂ (x10 ⁻²⁴ J)	m₂ (μ _B)	Т _с (К)
Bulk CFO	3.63	-5.54	2.67	843
Fe-terminated 1UC	2.71	-9.55	2.82	471
Fe-terminated 2UC	3.43	-14.6	2.48	582
FeCo-terminated 1UC	2.18	-27.04	2.77	375
FeCo-terminated 2UC	3.48	-13.5	2.69	591

47

49 **Figure S8.** Temperature-dependent magnetization curve for (a) 1UC, and (c) 2UC systems with FeCo-termination.

50

52 **Figure S9.** (a) The real and imaginary part of the dielectric function and (b) refractive index of 1UC CFO thin film with 53 FeCo-termination.

54

55 Figure S9 (a) shows the real and imaginary part of the frequency-dependent dielectric function for 1UC CFO thin film

56 with FeCo-termination, where the onset of the imaginary part shows the semiconducting nature. Besides, 1UC CFO 57 thin film has a maximum refractive index of 1.78 as shown in Fig. S9 (b).

58

60 Figure S10. (a) Reflectance (b) absorbance, and (c) transmittance for pristine 1UC thin films with FeCo-termination.

61 Figure S10 (a) shows that the 1UC structure has a very weak reflectance (~0.06 %) in visible range. Similarly, the

62 absorbance is also not that high (~3.7 %) as shown in Fig. S10 (b). Consequently, the 1UC with FeCo-termination is

63 also optically transparent because the transmittance is more than 96 % in the visible frequencies.