Supplementary Information

A plasmonic mesoporous gold-based SERS-microfluidic platform for the detection of infectious diseases

Mostafa Kamal Masud,^a Daigo Natsuhara,^{*b} Yuchen Dai,^a Javeria Bashir,^a Asep Sugih Nugraha,^a Saad M. Alshehri,^c Yoshio Bando,^{c,d} Md Shahriar Hossain,^{a,e} Yusuf Valentino Kaneti,^a Takayuki Shibata,^{*f} Yusuke Yamauchi^{*a,b,g}

^aAustralian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD 4072, Australia

^bDepartment of Materials Process Engineering Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan

^cDepartment of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

^dAustralian Institute for Innovative Materials, University of Wollongong, North Wollongong, New South Wales, Australia

^eSchool of Mechanical and Mining Engineering, Faculty of Engineering, Architecture, and Information Technology (EAIT), The University of Queensland, St Lucia, QLD, 4072, Australia ^fDepartment of Mechanical Engineering, Toyohashi University of Technology, Aichi 441-8580, Japan.

⁸Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonseiro, Seodaemun-gu, Seoul, 03722, Republic of Korea.

Figure S1. Schematic diagram of the microfluidic device used for the SERS detection of infectious disease. The fabricated PDMS microfluidic device consists of an array of five microchambers filled with a red-colored water.

Figure S2. Detailed design of the microchannel and microchambers integrated with a pair of passive valves.

Figure S3. (a) High-resolution SEM image and (b) TEM image of mAuNPs.

Figure S4. The UV-visible spectra of non-porous and mAuNPs (in water).

Figure S5. Optimization of the functionalization of mAuNPs with SERS molecule 4-MBA for achieving the most optimum signal. (a) Line curve of SERS response against different concentration of 4-MBA and (b) corresponding bar diagram. Error bars indicate standard deviation (SD) of three replicates for each concentration.

Figure S6. Time-dependent stability of the mAu/4-MBA SERS tag. (a) Each graph represents the characteristic Raman spectra of mAuNPs labeled with 4-MBA (SERS nanotags) until 14 consecutive days after synthesis. (b) Each red-colored data point represents the average Raman spectra of the mAuNPs nanotag for 14 consecutive days (RSD < 9%). Error bars indicate standard deviation (SD) of three replicates for each concentration.

Figure S7. (a) SEM image of the mAuNPs nanotag present in the assay showing the random connection of the mAuNPs, and (b) enlarged view of the interconnected mAuNPs nanotags.

Figure S8. SERS mapping image of the assay using a Witec Raman AFM microscope (Laser wavelength = 633 nm; Magnification = 20X; Integration time (trace) (s) = 0.05; Geometry (Width × Height) = $60 \times 60 \mu$ m; Image scan (points/line and points/image) = 60).

Table S1. Comparison of mAuNPs-Based SERS-Microfluidic Platform with other

reports.

NPs	Target proteins	Detection principle	Assay sensitivity	Remarks/ Uniqueness	Ref.
Au NPs	RBD (SARS- CoV-2 & MERS-CoV-2)	 SERS performance because of Au NPs aggregation. Raman fingerprints of RBDs (structural and compositional) characteristics using machine learning. 	-	It reported the fundamental optical properties of the SARS-CoV- 2 RBD and the underlying SERS mechanism.	S1
Dendritic Ag	SARS-CoV-2 RNA	 High SERS performance because of dendritic structure with many tips. Detects the target RNA sequence of SARS-CoV-2 by Raman spectroscopy. 	$LOD = 7.42 \\ \times 10^{-14} \text{ M}$ Linear range = 10 ⁻⁹ M- 10 ⁻¹³ M	Dendritic Ag NPs were obtained by a one-click synthesis via integrated electrodeposition platform.	S2
Au NPs	SARS-CoV-2 spike protein (in saliva)	 High SERS performance is achieved using 2 assembled layers of Au NPs. Ag NPs were used as the SERS nanotags to qualitatively and quantitatively read out the SARS-CoV-2 spike protein. 	$LOD = 7.60 \text{ fg mL}^{-1}$ (serum) and 0.10 pg mL ⁻¹ (blood)	The SERS activity of the substrates decorated with Au NPs was closely related to the number of assembled layers of Au NPs.	S3
Au NPs	SARS-CoV-2 spike protein aptamer	 The assay platform is based on one-step aptamer recognition using Raman spectroscopy. Au NPs were conjugated to the spike protein aptamer cocktail to ensure the SERS nanoprobes could selectively recognize virus particles and form sandwich structures. 	LOD = 124 TU μ L ⁻¹ (18 fM spike protein),	The assay exploited the high affinity binding with less steric hindrance on the coronavirus surface of aptamers and did not require virus pre-treatment.	S4

Au NPs	SARS-CoV-2		LOD = 257	This SERS-based	S5
	spike protein	• The SERS nanotags are based on 60 nm Au NPs.	fg mL ⁻¹	immunoassay exploited the	
				tendency of single	
		• The high SERS performance		chain Fv	
		is due to the binding affinity		antibody to bind to	
		recombinant antibody		SARS-CoV-2	
		fragments to the SARS-CoV-		spike protein.	
		2 spike protein.			
Ag@Au	SARS-CoV-2	 High SERS performance is achieved through the 	LOD = 0.22	The Ag@Au NPs	S6
1115	Igo	synergistic effects from	pg mL	unique surface	
		combining Au and Ag		chemistry of Au	
		properties.		shell and the	
		The modification of the		superior optical properties of the	
		Ag@Au NPs with antibodies		core Ag NPs. The	
		enabled them to recognize		nanogap between	
		and combine with SARS-		the Ag core and	
		cov-2 IgG, which was then captured by the SARS-CoV-2		contributed to the	
		spike protein.		enhanced Raman	
				signal.	
Si	SARS-CoV-2	 Raman fingerprints of RBDs 	LOD =	The immersion	S7
NWs@A	(RBD) spike	can be detected by the	9.3×10^{-12}	time in the	
g NPs	protein	fabricated SINWS/AgNPS sensor	molL ⁻¹	of AgNPs onto Si	
		bensor.		NWs can be tuned	
		 High SERS performance is 		to enhance the	
		attributed to the binding of		detection	
		surface with the nitrogen		the spike protein.	
		atoms (N) of spike protein			
		moiety.			
AuNPs/C	SARS-CoV-2	 A ternary "Y-shaped" 	LOD =	The Y-shaped	S8
OFs	spike protein	aptasensor was incorporated	$2.7 \times 10^{-16} \text{ g}$	aptasensor reduced	
		material consisting of Au NPs		between	
		and covalent organic	Linear range	plasmonic NPs,	
		frameworks (COFs).	$= 10^{-15}$ to	which was	
		The satisfactory SERS	$10^{-9} \text{ g mL}^{-1}$	detection	
		performance was due to the		detection.	
		stable and high affinity of			
		AuNPs/COFs substrate, as			
		densely packed "hotspots"			
		between the Au@4-			
		ATP@Ag@Au NPs and			
		AuNPs/COFs substrates.			
Ag NPs	SARS-CoV-2	• SERS platform based on	LOD =	The three-	S9
	spike and nucleocansid	functionalized silver	1 Ig mL^{-1}	aimensional (3D)	
	proteins	microplasma-engineered	2 spike	provided high	
	-	nanoassemblies (AgMEN).	protein)	sensitivity and	

		•	High SERS performance originated from the binding affinity of the antibodies functionalized on the Ag NPs and the spike and nucleocapsid proteins.	LOD = 0.1 pg mL ⁻¹ (SARS CoV- 2 nucleocapsid protein)	could be designed to be selective toward a specific SARS-CoV-2 spike protein variant, such as wild-type, alpha, delta or omicron under simulated human saliva conditions.	
Fe ₃ O ₄ - Ag ^{MBA} @ Au NPs	SARS-CoV-2 nucleocapsid protein	•	High SERS performance is achieved as a result of the signal enhancement by Ag@Au NPs, while the Fe ₃ O ₄ NPs could minimize interference from the matrix.	LOD = 0.08 pg mL ⁻¹	The Fe ₃ O ₄ - Ag ^{MBA} @Au NPs modified with the nucleocapsid protein could be used as a dual colorimetric-SERS detection.	S10
mAuNPs	SARS-CoV-2 S1, RBD and NCD Proteins.	•	High SERS response due to mesoporous structure of Au NPs. Multiplexed platform for simultaneous detection of 3 different spike proteins.	LOD = 14 pg mL ⁻¹	This platform offers a multiplexed system for detecting 3 different spike proteins along with 2 controls, providing high specificity and accuracy. Moreover, multiplexing enables the use of this platform outside of laboratories	This work

References

- (S1) K. Zhang, Z. Wang, H. Liu, N. Perea-López, J. C. Ranasinghe, G. Bepete, A. M.
 Minns, R. M. Rossi, S. E. Lindner, S. X. Huang, M. Terrones, ACS Photonics, 2022, 9, 2963-2972.
- (S2) Z. Li, Y. Luo, Y. Song, Q. Zhu, T. Xu, X. Zhang, Anal. Chim. Acta, 2022, 1234, 340523.
- (S3) M. Zhang, X. Li, J. Pan, Y. Zhang, L. Zhang, C. Wang, X. Yan, X. Liu, G. Lu, Biosens. Bioelectron. 2021, 190, 113421.
- (S4) P. C. Guan, H. Zhang, Z. Y. Li, S. S. Xu, M. Sun, X. M. Tian, Z. Ma, J. S. Lin, M. M.
 Gu, H. Wen, F. L. Zhang, *Anal. Chem.*, 2022, 94, 17795-17802.
- (S5) D. Antoine, M. Mohammadi, M. Vitt, J. Dickie, S. S. Jyoti, M. A. Tilbury, P. A. Johnson, K. E. Wawrousek, J. G. Wall, ACS Sensors, 2022, 7, 866-873.
- (S6) P. Liang, Q. Guo, T. Zhao, C. Y. Wen, Z. Tian, Y. Shang, J. Xing, Y. Jiang, J. Zeng, *Anal. Chem.*, 2022, 94, 8466-8473.
- (S7) K. Daoudi, K. Ramachandran, H. Alawadhi, R. Boukherroub, E. Dogheche, M. A. El Khakani, M. Gaidi, *Surf. Interfaces*, 2021, 27, 101454.
- (S8) Y. Xie, Q. Li, J. Chen, W. Yue, Z. Xia, M. Zeng, Y. He, Y. Zhao, X. Luo, Sens. Actuators B Chem., 2023, 394, 134470.
- (S9) Y. J. Yeh, T. N. Le, W. W. W. Hsiao, K. L. Tung, K. K. Ostrikov, W. H. Chiang, *Anal. Chim. Acta*, 2023, **1239**, 340651.
- (S10) J. Li, P. Liang, T. Zhao, G. Guo, J. Zhu, C. Wen, J. Zeng, Anal. Bioanal. Chem., 2023, 415, 545-554.