Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supplementary information

Temperature Self-Compensation Thin Film Strain Gauges Based on nano-SiO₂/AgNPs Composite

Yang Zhao*, Jin Liu, Yuhuang Ying, Hongyu Chen, Wenxuan Wang, Sijie Zhang, Zhenyin Hai and Daoheng Sun

Y. Zhao, J. Liu, Y. H. Ying, H. Y. Chen, W. X. Wang, S. J. Zhang, D. H. Sun Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, PR China E-mail: zhaoy@xmu.edu.cn (Y. Z.)

Y. Zhao Department of Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China

Z. Y. Hai

School of Aerospace Engineering, Xiamen University, Xiamen 361102, China, PR China

Table S1 Performance comparison of the sensor with near-zero-TCR strain sensors prepared by functional ink reported in the literature.

Sensor Materials	Substrate	Process	Curing temperature of sensor materials (°C)	Maximum detectable strain (micro-strain is underline)	GF	TCR (ppm /°C)	Ref
Silver/carbon	PET	screen-printed	130	<u>0.08%</u>	7.7	Unclear	1
SWCNT/graphite	PET	spray coating	90	<u>0.16%</u>	5.0	Unclear	2
GNPs/Polysilazane	Al_2O_3	Direct ink writing	500	<u>0.04%</u>	19.1	-3.7	3
AgNWs/graphene	PDMS	Drop coating	90	40%	80	160	4
AgNPs/CNT	Silicone	Drop coating	60	100%	38.2	-11.6	5
MWCNT/graphene	Polyimide	Drop coating	Room temperature	Unclear	16.2	Unclear	6
graphene/CNT/silicone	-	Direct ink writing	Room temperature	100%	10.7	114	7
P3HT/BCF/AgNPs	Polyimide	Spin coating	80	6.1%	64	1100	8
PEDOT:PSS/DMSO	PET	Spin coating	120	2%	1.9	93	9
AgNPs	PET	Spin coating	Unclear	1%	51	19	10
Nano-SiO ₂ /AgNPs	Alloy steel	Direct ink writing	150	<u>0.2%</u>	16.4	30	This work

PET: polyethylene terephthalate, SWCNT: single-wall carbon nanotube, GNPs: graphite nanoplatelets, AgNWs: silver nanowires, PDMS: polydimethylsiloxane, AgNPs: silver nanoparticles, CNT: carbon nanotubes, MWCNT: multi-walled carbon nanotubes, P3HT: poly(3-hexylthiophene-2,5-diyl), BCF: tris(pentafluorophenyl)borane, PEDOT: poly(3,4-ethylenedioxythiophene), PSS: poly(styrenesulfonate), DMSO: dimethyl sulfoxide

Fig. S1. (a) Experiment setup for strain response detection. (b) Platform for strain testing and acquisition. (c) Experiment setup for temperature-resistance detection. (d) Experiment setup for dynamic response detection under variable temperature environments.

Fig. S2. The thickness of PI insulation film is close to 6 µm.

Fig. S3. SEM image of AgNPs thin films.

References

- 1. D. Zymelka, T. Yamashita, X. Sun and T. Kobayashi, *Journal*, 2020, 20.
- 2. S. Luo and T. Liu, *Advanced Materials*, 2013, **25**, 5650-5657.
- 3. C. Wu, F. Lin, X. Pan, Y. Zeng, G. Chen, L. Xu, Y. He, G. He, Q. Chen, D. Sun and Z. Hai, *Chemical Engineering Journal*, 2023, **457**, 141269.
- 4. S. Niu, X. Chang, Z. Zhu, Z. Qin, J. Li, Y. Jiang, D. Wang, C. Yang, Y. Gao and S. Sun, *ACS Applied Materials & Interfaces*, 2021, **13**, 55307-55318.
- 5. S. Niu, S. He, Y. Chen, Z. Zhu, X. Chang, C. Yang, J. Li, Y. Jiang, D. Wang, Y. Zhu and S. Sun, *Advanced Materials Technologies*, 2023, **8**, 2300867.
- 6. R. Ramalingame, J. R. Bautista-Quijano, D. D. Alves and O. Kanoun, *Journal*, 2019, **3**.
- 7. W.-B. Zhu, S.-S. Xue, H. Zhang, Y.-Y. Wang, P. Huang, Z.-H. Tang, Y.-Q. Li and S.-Y. Fu, *Journal of Materials Chemistry C*, 2022, **10**, 8226-8233.
- 8. Y. Kato, K. Fukuda, T. Someya and T. Yokota, *Journal of Materials Chemistry C*, 2023, **11**, 14070-14078.
- Y. K. Choi, T. H. Kim, J. H. Song, B. K. Jung, W. Kim, J. H. Bae, H. J. Choi, J. Kwak, J. W. Shim and S. J. Oh, *Nanoscale*, 2023, 15, 7980-7990.
- 10. Y. K. Choi, T. Park, D. H. D. Lee, J. Ahn, Y. H. Kim, S. Jeon, M. J. Han and S. J. Oh, *Nanoscale*, 2022, **14**, 8628-8639.