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Note 1. The optical micrographs of the prepared samples

Figure S1. The optical micrographs of the prepared samples and detailed construction of meta-atom. (a) Sample 

1 P = 53 μm (b) Sample 2 P = 80 μm (with a Scale bar of 100 μm) (c) meta-atom 

As shown in Fig. S2c, the optimized structure and detailed parameters of the meta-atom are given as 
follows: Lx = 53 μm, Ly = 22 μm, w = 5.5 μm, s = 2.5 μm and g = 5 μm. And the coupling between lattice 
and double resonances is manipulated via the period variation.

Note2. The coupling of lattice to two resonances generated on static Si-metal hybrid metasurfaces 

Figure S2. Transmission spectra and resonance properties with the growing period. Experimental and simulated 

transmission spectra (broadband transparent window marked in lavender) with (a) P=53 μm, (b) P=80 μm (c) 

Resonance intensity, (d) Resonance frequency, (f) Quality factor

The transmission spectra for P = 53, and 80 μm are shown in Fig. S2a, b, respectively. The red 
curves and black dots depict the simulated and experimental results, which match well with each other. 
And the deviations in resonance frequency, linewidth, and transmission amplitude are might due to the 
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low spectral resolution of the measurement and manufacturing imperfections. For the systematic 
exploration of the lattice mode impact on dual-resonances, the QF, resonance frequency, and intensity, 
varying by increased lattice periods with constant structure parameters otherwise, are shown in Fig. S2c, 

d, and e. The value of QF and the resonance intensity are obtained by  and 0
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, where f0 is the resonance frequency, fHM1 and fHM2 are the frequencies in which the peak dipI T T 

transmission amplitude is half of the maximum value near f0, Tpeak and Tdip represent the peak and dip of 
transmission near f0. Fig. S1d indicates the frequency shifts of fL and fH with varying lattice periods. For 
periods increasing from 53 to 80 μm, the fH redshifts from 1.42 to 1.32 THz and then blueshifts to 1.33 
THz when P= 80 μm. In contrast, the fL is robust to the lattice period variations, which only weakly shift 
from 0.63 to 0.61 THz. In Fig. S1c, the intensity at fL and fH decreased from 0.83 and 0.66 to 0.63 and 
0.10. Besides, the QF at fH rises from 12.55 to 15.23 and then decreases to 13.26 after the perfect match 
between lattice modes with high-order resonance, as illustrated in Fig. S1e. However, the QF at fL steadily 
increases from 3.03 to 5.32, with resonance intensity above 0.6.

Note 3. The relationship between the conductivity of silicon and pumping optical power
The measured negative differential transmission ( ) of silicon on sapphire with varying 0/E E

optical pumping power is shown in Fig.S3 a. The transient relaxation dynamics is theoretically fitted by 
an exponential decay function by:
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in which A0 and A1 are the constant and exponential parts of the silicon carriers dynamics process; 
 and  represent the start time for the relaxation decay and decay time constant. By theoretical fitting, 0t 

the  is calculated to be 247.6 ps. Next, the frequency-resolved photoconductivity  could be  ( ) 

obtained as 
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where  is the free space permittivity;  is the speed of light in free space;  is the thickness of 0 c d

silicon epitaxial layer;  and  is defined as the transmission of SOS without optical pump 0 ( )E  ( )pE 

and different influences, respectively;  and  denotes refractive index of the sample on both sides. an bn
Fig.S3 b illustrates the measured frequency-resolved  under changing pump fluences.( ) 



Figure S3. The relationship between the conductivity of silicon and optical pumping (a) Measured relaxation 

dynamics of silicon photogenerated carriers by OPTP with varying pump fluences (b) Frequency-resolved 

photoconductivity of silicon on sapphire with changing pump fluences.

Note 4. The near-field distribution of different metasurfaces with altering conductivities
To explore the intrinsic mechanisms of optical modulation, the electrical field, Z component of the 

magnetic field and surface current distribution at different frequencies with various silicon conductivity 
are shown in Figure S4. Considering the resemblance in the transmission spectra with various lattice 
periods, we exhibit the near-field distribution at fL, fH and the peak frequency of BTTW (fM=0.9 THz) 
with different silicon conductivity when P =53 μm. With S=160 S/m, a strong local electric field is 
generated at the gap of SRRs at fL and fM, while horizontally distributed in the inner of square rings at fH. 
And the toroidal dipole and quadrupole appear at fL, fM and fH, respectively. Moreover, the surface current 
distribution demonstrates the presence of an electric dipole at fL and fM, whereas an electric quadrupole 
at fH. As a result, the low-order resonance at fL and fM mainly comprises electric and toroidal dipole, while 
the high-order at fH consists of the electric and toroidal quadrupole. Increasing the conductivity to 
simulate growing optical pumping fluences, the photogenerated carriers from the silicon induce a 
capacitive breakdown of the gaps, resulting in field remodeling. As a result, the surface current 
distribution, electric, and Z component of the magnetic field is significantly weakened at fL and fM, 
whereas a slight attenuation occurs at fH. 

Figure S4. The electrical field, Z component of magnetic field and surface current distribution at different 

frequencies with various conductivity of silicon. (a)-(c) S = 160 at fL (d)-(f) S = 15000 at fL (g)-(i) S = 160 at fM (j)-



(h) S = 15000 at fM (m)-(o) S = 160 at fH (p)-(r) S = 15000 at fH

Note 5. The relationship between lattice and the scattering intensity of multiple radiating polarons
Relying on multipole decomposition, an approach to calculate multipole moments scattering 

intensity by integrating the current and charge density, we present a more in-depth understanding of the 
interaction between lattice mode and dual-resonances. The main types of multipole moments, including 

P (electric dipole moment), T (toroidal dipole moment), M (magnetic dipole moment), ( electric ( )
,
e
 Q

quadrupole moment), and ( magnetic quadrupole moment), are considered. And the multipole ( )
,
m

 Q

moments and corresponding scattering intensities are calculated in the Cartesian coordinate system (α, β 
= x, y, z) by
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where r and J is the position vector and the current density. For a visual representation of the 
interaction between lattice mode and multipole moments, it is necessary to note that we normalized the 

scattering intensities by   due to the enormous difference of 
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magnitude order in the scattering intensity between various polar moments, which  and  represent PiI 0PI
the scattered intensity at pi and p0 ( p0 = 53 μm). As demonstrated in Fig. S3f, the lattice mode fLM(0,1) 
(Brown line) and fLM(1,1) (Green line) redshift by increasing periods, accompanied by a narrowing 
transmission valley and frequency shift at fL and fH. To explain this phenomenon, the normalized 



scattering intensities for multipole moments are shown in Figures 5a-e, with the resonance at fL and fH 
marked by black dashed boxes considering the frequency shifts.

Besides, we also summarize the lattice effects on resonance as follows: (i) As dark modes, lattice 
coupling with bright modes is universal, which impacts not only the resonance near fLM but also the 
ones ahead. (ii) With increasing periods, the match/mismatch between lattice mode and resonance 
enhances/weakens the LMI at the direct coupled mode and consistently enlarges the QF at the indirect 
one with a relatively great resonance intensity. (iii) The match of lattice mode would enhance the 

radiation properties of the moments at the resonant frequency, including P, M, T,  and , to ( )
,
e
 Q ( )

,
m

 Q

boost the LMI. It is demonstrated that the slight sacrificing of compactness could enhance resonance 
without changing the pattern above the substrate and offer a counter-conventional paradigm for high QF 
device design, LMI enhancement, and nonlinear optics.
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Figure S5. Normalized scattering intensity of multipole moments including P, T, M, , and  with ( )
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increasing lattice periods. The green and brown dashed curves signify the lattice mode fLM(0,1) and fLM(1,1), 

respectively. (a) the electric dipole moment P (b) the magnetic dipole moment M (c) the toroidal dipole moment T 

(d) the electric quadrupole moment  (e) the magnetic quadrupole moment  (f) the multipole scattering ( )
,
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intensity with corresponding resonance.

Note 6. Removal of Water Vapor Errors by Self-Calibration Normalization.
The THz waves interact with water vapor during airborne transmission, leading to errors in both the 

time and frequency domains. Here, the water vapor error can be eliminated by self-calibration before and 
after the ultrafast photodynamic process. Assuming that the thickness of the test sample is d, the total 
transmission distance is , the mathematical expression for the signal with the noise of carrying L d 

water vapor after passing through the sample is as follows:
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'

' ' ' 2 ( ) ( ) 2 ( )( ) ( ) exp( ) exp( )exp( )
2

s
sam vap nitrogen as sa

j vn v d L v j L vn vE v E v t t
c c

  


   
 

%

The normalized target sample signal is
'

'

' '

( ) ( ) / ( )

2 [ ( ) ( )]exp( )

sc sam vap sam vap

as sa s s

as sa

E v E v E v

t t j v n v n v d
t t c


 

 


% %

Hence, the error introduced by water vapor is completely eliminated. 

Note 7. The verification of lattice enhancement for light-driven modulators.

To demonstrate the lattice enhancement effect, we have simulated the ultrafast optical modulator 
[1] proposed by Hu et al. via the finite time domain difference method (FDTD). As illustrated in Figure 
S6a, X and Y directions were assumed as periodic boundary conditions, and the plane-wave with an X-
polarized electric field was directed towards the metasurfaces along Z direction (Set as an open 
boundary). The transmission spectrum and multipole analysis for P = 60 μm is shown in Figure S6c. The 
fL (low-frequency resonance) and fH (high-frequency resonance) appear at 1.2 and 2.3 THz, respectively, 
originating in dipole-dominated strong scattering. With increasing periods, the lattice mode fLM(0,1) 
blueshifts to match\mismatch with fL, and fLM(1,1) blueshifts to coupling to fH and fL successively, leading 
to the narrowing of resonances. It is worth noting that the fL does not disappear with the mismatch because 
the lattice is only an aid for the bright resonance. The normalized scattering intensities of multipoles are 
demonstrated in Figure S7. All the scattering intensities of multipoles are increased with the 
strengthening of lattice coupling, coinciding with the universality of lattice enhancement effect. 

However, the scattering intensities of T and  are still boosted owing to the matching of fLM(1,1), when ( )
,
m

 Q

fLM(0,1) mismatches with fL.



Figure S6. The schematic diagram of simulation and the transmission spectrum (a) Simulated details in FDTD 

(b) Transmission spectrum with varying periods (c) The transmission spectrum and multipole analysis results for P 

= 60 μm
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Furthermore, the tunable performance of modulators with different periods is investigated. The 
conductivity of silicon is regularly changed in simulation to mimic varying optical pumping. The 
modulated properties for P = 65, 73, and 90 μm are shown in Figure S8. Consistency with the results [1], 
the fL is intensely suppressed by growing pump fluence because of conducted silicon bridge. Meanwhile, 
the device could modulate slow-light behaviors, characterized by a pronounced group delay switching. 
As presented in our paper, the modulated performance, including transmission and group delay 
modulation, shows significant variations for different periods. The simulated results of modulated 
performance with varying periods are shown in Figure S9 for a clear comprehension of the lattice effect 
on modulators. The transmission modulation strengthens from 0.48 to 0.55 and then decreases to 0.29 
with increasing periods, while the slow light behaviors are consistently suppressed.

Figure S8. The transmission properties and slow light behaviors with varying pumping fluence for different 

periods (a), (c), and (e) transmission spectrum and (b), (d), and (f) group delay spectrum with lattice periods (a, b) 

P = 65 μm, (c, d) P = 73 μm, and (e, f) P = 95 μm
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modulation 

Note 8. The difference between structural parameters and lattice periods.
We investigated the modulated performance of light-driven devices with different structural 

parameters (s and g), which is demonstrated in Figure S10. Clearly, the fL and fH blue shift with increasing 
s or g, and possess varying modulated depth (In Figures S10c, and f). However, the trends of varying 
modulated depth are irregular, which will increase the time for device optimization. Besides, the apparent 
frequency shifts might be harmful to the desired working point compared with lattice enhancement. In 
other words, for potential modulation of performance at fixed resonant frequency, several structural 
parameters should be adjusted. 

Figure S10. The varying performance of light-driven modulators with changing structural parameters. The 

changing transmission characteristics with different s (a) Transmission spectrum (b) Frequency shifts (c) Modulated 

depth. The corresponding results with changing g. (d) Transmission spectrum (e) Frequency shifts (f) Modulated 

depth.

Note 9. The sensing performance for detected substance with different thicknesses.
To demonstrate the sensing performance for substances with different thicknesses, we have 

investigated the change of self-calibrating normalized transmission. As shown in Figure S11, the 
refractive index sensing performance of the device is enhanced with growing thicknesses, which is due 
to the increased contact volume between the substances and the electromagnetic field.



Figure S11. The refractive index sensing performance for different thicknesses of detected substances. (a) 

Detects thickness of 1 μm (b) Detects thickness of 5 μm (c) Detects thickness of 10 μm (d) Detects thickness of 20 

μm.

The sensing performance for different detected substances is demonstrated in Figure S12, which is 
firstly enhanced with increased thicknesses. However, unlike the sensing performance to refractive 
index, the loss sensing performance reaches an optimum and then decreases with continuously increasing 
thicknesses. 

Figure S12. The loss sensing performance for different thicknesses of detected substances. (a) Detects thickness 

of 1 μm (b) Detects thickness of 5 μm (c) Detects thickness of 10 μm (d) Detects thickness of 20 μm.

Note 10. The influence of oblique EM waves on metadevice.
As shown in Figure S13, we have simulated the transmission spectrum for unexcited/excited 

metadevice with P = 53 μm. In Figures S13a and b, for the EM waves incident on the small angle, both 
the resonant intensity and frequency of unexcited/excited metadevice of fL and fM, remain stable, while 



slightly changing at fH. However, the resonant intensity of fL, fM, and fH significantly changes for oblique 
EM waves in big angles. The resonance red shifts at fH while remaining at fL. In conclusion, the 
metadevice exhibits angular robustness for oblique EM waves, which is beneficial for realistic 
application.

Figure S13. The transmission spectrum of unexcited/excited metadevice with oblique EM waves. (a) Unexcited 

metadevice with oblique EM waves in small angle (b) Excited metadevice with oblique EM waves in small angle 

(c) Unexcited metadevice with oblique EM waves in big angle (d) Excited metadevice with oblique EM waves in 

big angle.

Note S11. The mutual correlation among multiple functions based on silicon-metal hybrid metasurfaces
As shown in Figs2 f-g and Figs3 f-g in the main text, the resonance attenuation/enhancement at fL 

and fH occur simultaneously with a stable group delay switch at BTW under optical pumping. There is 
consistency among multiple functions, implying that it is impossible to achieve a single function in 
isolation. Furthermore, in Figs4 b-c, the effect of lattice on the performance of various functions is 
different due to the dissimilar influence on resonances and BTW. The transmission modulated depth at 
fL and fH is increased/decreased depending on lattice match/mismatch, while the stability of the stable 
group delay switch is always boosted.

[1] Y. Hu, T. Jiang, J. Zhou, H. Hao, H. Sun, H. Ouyang, M. Tong, Y. Tang, H. Li, J. You, et al., 
Advanced Optical Materials 2019, 7, 22 1901050.”


