Supplementary Information for

Understanding the Growth Mechanisms of γ-GeSe for Polymorph-Selective Large-Area Growth

Joong-Eon Jung, ${ }^{1}$ Sol Lee, ${ }^{1}$ Hani Kang, ${ }^{1}$ Myeongjin Jang, ${ }^{1}$ Jinsub Park, ${ }^{1}$ Petri Mustonen, ${ }^{2}$ Harri Lipsanen, ${ }^{2}$ Zhipei Sun, ${ }^{2}$ Hoon Hahn Yoon ${ }^{3}$ and Kwanpyo Kim ${ }^{1, *}$
${ }^{1}$ Department of Physics, Yonsei University, Seoul 03722, Korea
${ }^{2}$ Department of Electronics and Nanoengineering, Aalto University, Espoo 02150, Finland
${ }^{3}$ Department of Semiconductor Engineering, School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
*Address correspondence to K.K. (kpkim@yonsei.ac.kr)

Supplementary Figure S1. SEM images of Au deposited at various thicknesses on $\mathrm{SiO}_{2} / \mathbf{S i}$ substrates. (a) Au 2 nm , (b) 2.5 nm , (c) 3 nm , (d) 5 nm , and (e) 10 nm .

Supplementary Figure S2. Au nanoparticles on the surface of $\boldsymbol{\gamma}$-GeSe. (a) STEM image of a γ-GeSe flake. (b,c) Enlarged images from panel a. Multiple Au nanoparticles on the γ-GeSe surface were observed. (d) Zoomed-in STEM image of an Au nanoparticle with [111] zone axis. The inset shows the fast Fourier transform (FFT) image.

Supplementary Figure S3. $\boldsymbol{\gamma}$-GeSe synthesis depending on the thickness of deposited Au.
(a) Optical image of growth product without Au deposition. (b) Optical image of synthesizing γ-GeSe by depositing 2 nm of Au. (c) 2.5 nm . (d) 3 nm . (e) 5 nm . (f) 10 nm . (g) Optical image of growth product with 50 nm of $\mathrm{Au} . \gamma-\mathrm{GeSe}$ was not synthesized. The crystals marked with red circles are γ-GeSe.

Supplementary Figure S4. Histogram of $\boldsymbol{\gamma}$-GeSe flake length depending on the thickness of deposited Au. (a) 2 nm , (b) 2.5 nm , (c) 3 nm , (d) 5 nm , and (e) 10 nm .

Supplementary Figure S5. Spiral growth of γ-GeSe crystal. SEM images of γ-GeSe display the spiral growth shape. Dashed lines indicate the crystal edges.

Supplementary Figure S6. Investigation of γ-GeSe surface topography. (a) SEM image of the alloy droplet trajectory on the γ-GeSe surface. Yellow arrows indicate the trajectory of droplet movement. (b) AFM measurement of γ-GeSe crystal. Black arrows indicate the trajectories.

Supplementary Figure S7. $\boldsymbol{\gamma}$-GeSe grown on h-BN and HOPG. (a,b) Optical images of $\boldsymbol{\gamma}$ GeSe grown on exfoliated h-BN. The flakes grown from different seeds are connected. (c,d) Optical images of γ-GeSe grown on exfoliated HOPG. (e,f) Optical images of γ-GeSe grown on HOPG substrates.

Supplementary Figure S8. Investigation of $\boldsymbol{\gamma}$-GeSe crystal connection grown on h-BN substrate. (a) Optical image of connected γ-GeSe grown from different locations on h-BN. (b) Cross-sectioned TEM image of the area in the red box. (c) Magnified STEM image of nucleation 1 region. (d) Magnified STEM image of the area in the blue box of panel c. (e) STEM image showing the connection between nucleation 1 and the connected part. The yellow arrow shows the connection of the atomic layers of $\gamma-\mathrm{GeSe}$.

Supplementary Figure S9. Synthesis of GeSe with and without Au on HOPG substrate. Optical image of γ-GeSe synthesized by depositing Au on only half-bottom of the HOPG substrate. γ-GeSe grows only below the boundary line. The crystals marked with blue circles are $\alpha-\mathrm{GeSe}$.

Supplementary Figure S10. Characterizations of CVD graphene. (a) Optical image of the single crystalline graphene on $\mathrm{SiO}_{2} / \mathrm{Si}$ substrate. (b) Raman spectrum of the single crystalline graphene. (c) Optical image of the polycrystalline graphene on $\mathrm{SiO}_{2} / \mathrm{Si}$ substrate (d) Raman spectrum of the polycrystalline graphene.

a $[\AA]$	Lattice mismatch with γ-GeSe $100 \times\left(3 \mathbf{a s u b s t r a t e ~}-2 \mathbf{a}_{\gamma-\text { Gese }}\right) / 2 \mathbf{a}_{\gamma-\text { GeSe }}$	
γ-GeSe	3.73	$\mathrm{~N} . \mathrm{A}$.
h-BN	2.50	0.54%
Graphite	2.46	-1.07%

Supplementary Table S1. Lattice parameters of γ-GeSe and hexagonal substrates.

