Giant enhancement of anti-quenching upconversion luminescence in

Sc₂W₃O₁₂:Er³⁺/Yb³⁺ phosphors for temperature sensing

Xufang Wang^a, Ping Zhang^a, Xianglong Xiao^a, Ruoshan Lei^a, Lihui Huang^a, Shiqing Xu^a, Shilong Zhao^{a,*}, Xiuli

Wang^{b,*}

Fig.S1 Rietveld analysis of $(KMg)_x Sc_{2-x} W_3 O_{12}$: 1 mol%Er³⁺/20 mol%Yb³⁺ (x = 0, 0.5, 0.6, 0.75, 1, 1.25) phosphor.

Fig.S2 EDX spectra of different particles in $(KMg)_{1.25}Sc_{0.75}W_3O_{12}$:1 mol%Er³⁺/20 mol%Yb³⁺ phosphors.

Fig.S3 (a,b) TEM image of (KMg)ScW₃O₁₂:1 mol%Er³⁺/20 mol%Yb³⁺ phosphors.

Fig.S4 XRD patterns of (a) (KMg)ScW₃O₁₂: $a \mod e^{3+/20} \mod e^{3+/20} = 0.5, 1,$ 1.5, 2, 3) and (b) (KMg)ScW₃O₁₂: $2 \mod e^{3+/b} \mod e^{3+/b} = 10, 15, 20, 25,$ 30,35).

Fig.S5 The dependence of green upconversion emission spectra on the temperature based on fiber optic system.

Fig.S6 The dependence of integrated upconversion intensity on temperature.

Materials	Temperature range(K)	Sa(K ⁻¹)	Sr(K ⁻¹)	Ref.
Y2Mo3O12:Er/Yb	303-583	0.0068	0.0097	S1
Y ₂ W ₃ O ₁₂ :Er/Yb	303-523	0.0041	0.0093	S2
Al ₂ Mo ₃ O ₁₂ :Er/Yb	303-603	0.0111	0.0109	S3
Sc2Mo ₃ 0 ₁₂ :Er/Yb	303-573	0.0001	0.0106	S4
Sc ₂ W ₃ O ₁₂ :Er/Yb	403-753	0.008	0.0083	S5
(KMg)ScW ₃ O ₁₂ :Er/Yb	253-573	0.0117	0.0165	This work

Table S1 Temperature sensing properties of A2M3O12 material

Reference:

- [S1] H. Lv, P. Du, L. Luo, W. Li. Adv. Mater., 2021, 2, 2642.
- [S2] X. Lai, W. Li, L. Luo, P. Du. J. Alloy. Compd., 2024, 976, 173311.
- [S3] H. Lv, L. Liu, D. Wang, Z. Mai, F. Yan, G. Xing, P. Du. J. Lumin., 2022, 252, 119333.
- [S4] W. Liu, S. Xu, L. Lei. Opt. Mater., 2023, 143, 114166.
- [S5] Q. Wang, J. Wen, J. Zheng, Q. Xia, C. Wei, X. Huang, Z. Mu, F. Wu. J. Lumin., 2022, 252, 119306.

Fig.S8 Linear fit between FIR and temperature in thermostat bath testing.