Artificial light harvesting gel based on saponification triggered gelation of aggregation induced emissive BODIHYs

Durgendra Yadav^a, Vishwa Deepak Singh^b, Ashish Kumar Kushwaha^a, Anjani Kumar^a, Roop Shikha Singh^{a*}

^aDepartment of Chemistry, Institute of Science, Banaras Hindu University, Varanasi- 221 005

(U. P.) India

^bDepartment of Chemistry, D.A.V. P.G. College, Gorakhpur – 273001 (U. P.) India

Sr. N.	Contents	Page No.
1.	Experimental	S3 – S5
2.	¹ H and ¹³ C NMR spectra of L1	S6
3.	¹ H and ¹³ C NMR spectra of L2	S7
4.	¹ H and ¹³ C NMR spectra of B1	S8
5.	¹¹ B and ¹⁹ F NMR spectra of B1	S9
6.	¹ H and ¹³ C NMR spectra of B2	S10
7.	¹¹ B and ¹⁹ F NMR spectra of B2	S11
8.	Mass spectra of L1 and L2	S12
9.	Mass spectra of B1 and B2	S13
10.	Solid state emission spectra of L1, L2, B1 and B2	S14
11.	Emission spectra of L1, L2 B1 and B2 in different polarities of	S14
	solvent	
12.	Absorption spectra of L1 and L2 in varying THF/water mixture	S15
13.	Emission spectra of L1 and L2 in varying THF/water mixture	S15
14.	Absorption spectra of B1 and B2 in varying THF/water mixture	S15
15.	DLS and Images of Tyndall effect	S16
16.	SEM images	S16
17.	Emission spectra of L1(a), B1 (b) and B2 (c) in methanol/glycerol	S16
	mixture	
18.	Fluorescence decay profile of ligands L1 and L2	S17
19.	Crystal Packing	S17, S18 &
		S23
20.	Photographs of GL_1 , GL_2 , GB_1 , GB_2 in vial with different	S19
	concentration of NaOH	
21.	Absorption and emission spectra of L2 and B2 in presence of NaOH	S20
	solution and rheological analyses	
22.	¹ H NMR titration of L2 and B2	S21
23.	Mass spectrum of GL ₂ and GB ₂	S22
24.	DFT optimized structures of L1, L2, GL1 and GL2	S23
25.	UV/Vis spectra of L1, L2, GL ₁ , GL ₂ , B1, B2, GB ₁ and GB ₂ obtained	S24
	from TD-DFT calculations	

26.	DFT optimized structures of GB ₁ and GB ₂	S25
27.	Fluorescence spectra of B2 with RhB	S26
28.	Fluorescence spectra of GB ₂ with RhB	S27
29.	Tables	S28-S31
30.	References	S31

Experimental

Materials

4–aminobenzoic acid, 5–aminoisophthalic acid, N,N-diisopropyl–ethylamine, and borontrifluoride etherate were purchased from Sigma Aldrich India. Common reagents, sodium acetate, NaOH, C₂H₅OH, HCl, NaNO₂ and the solvents ethyl acetate, hexane, dimethylsulphoxide (DMSO), dichloromethane (DCM), dimethylformamide (DMF) and methanol etc. were procured from Avra Chemicals Hyderabad, India and dried and distilled following standard literature procedures.¹ The synthetic manipulations have been performed under oxygen free nitrogen atmosphere and photophysical studies made using spectroscopic grade solvents.

General information

¹H (500 MHz), ¹³C (125 MHz), ¹¹B (160 MHz) and ¹⁹F (470 MHz) NMR spectra have been obtained on a JEOL AL 500 FT–NMR spectrometer at room temperature using Si(CH₃)₄ as an internal whereas BF₃·OEt₂ and CF₃COOH as external reference. UV–vis and emission spectra have been acquired at room temperature on a Shimadzu UV–1800 and Perkin Elmer LS55 Fluorescence spectrometers. Electrospray ionization Mass Spectrometer. Time resolved fluorescence lifetime experiments have been made on a TCSPC system from Horiba Yovin (Delta Flex). Compounds were excited at 368 nm using a pico–second diode laser (Model: Delta Diode). Data analysis has been performed using decay analysis software (HORIBA Scientific: EzTime). Scanning electron microscopic images were captured on quanta 200 F microscope using silicon wafer. Dynamic light scattering (DLS) studies were performed on a ZetaSizer Ultra (ZSU5700) instrument from Malvern Panalytical, Atomic force microscope (AFM) images were captured on a NTMDT Solver NEXT Russia, Transmission electron microscope (TEM) was carried out using TECHNAI G² 20 TWIN, FE, USA, Rheological studies were done by Anton-Paar MCR 72 rheometer and MCR 102 (Anton Paar).

Preparation of gel (GL₂ and GB₂)⁸: Stock solution of L2 and B2 (c, 1.0×10^{-2} M in CHCl₃) and NaOH (c, 2.0 M in MeOH) were prepared and filtered to obtain a clear solution. For gelation a solution of NaOH (2.0 equiv) was added to a freshly prepared solution of L2 and B2 (1.0 mL) with 1 or 2 strokes of shaking. Almost instantaneously (within a minute) it gave a gel material (GL₂ and GB₂).

AFM, SEM and TEM: Diluted gels ($\sim 10^{-4}$ M) were used for AFM whereas vacuum dried gels were used for SEM analysis. Samples were prepared by smearing a small amount of freshly prepared gels on a carbon-coated Cu TEM grid (300 mesh), which was air-dried at room temperature before imaging at an accelerating voltage of 200 kV without staining.

Rheology Experiments: Viscoelastic nature of the gels G_{L2} and GB_2 were studied individually by dynamic rheology, where viscous (storage, G') and elastic (loss, G") moduli were plotted against oscillatory strain (γ , %) and angular frequency (ω , rad/s). Dynamic oscillatory work kept at a frequency of 1 to 10 rad/s. A small amount of freshly prepared gel was scooped out and placed on the stationary plate of the rheometer, and parallel-plate geometry (20 mm diameter, 0.2 mm gap) was employed to perform the rheological experiments.

Single crystal analysis²⁻⁴: Single crystal X–ray data has been collected on a Bruker APEX–II CCD diffractometer at 293 K (L1, L2, B1 and B2) equipped with a Mo–K α (λ = 1.54184 Å, graphite monochromator) radiation. The φ and ω scan modes were employed for data collection. Structures have been refined by direct methods (SHELXS 97) followed by full–matrix least squares on F^2 (SHELX 14) within the OLEX² environment. All the atoms (except H) were assigned anisotropically. Interaction and stacking distances were analyzed using PLATON. Files related to crystal data have been submitted with CCDC deposition numbers are 2337969 (L1), 2337970 (L2), 2309327 (B1) and 2309328 (B2). Crystallographic data and refinement parameters for hydrazone ligands and BODIHYs are summarized in Tables S1–S3. We obtained single crystals of ligands and BODIHYs by slow evaporation of CH₂Cl₂/CH₃OH solution over a period of three weeks.

Theoretical studies⁵⁻⁷: The geometry optimizations for ligands, BODIHYs and their saponified gels have been made by density function theory (DFT) using GAUSSIAN 09 program package at B3LYP levels. Geometry for ligands and BODIHYs has been taken from single crystal X-ray data for optimization. The 6–31G** basis set has been used for non-metal atoms (C, H, N, S, O, B, F) for geometry optimization and conformational stability in gaseous state. The time-dependent DFT (TD-DFT) has been performed for investigating UV-vis spectra of the ligands and BODIHYs using same basis sets.

UV/vis and Fluorescence Titration Study: Stock solutions of L2 and B2 (10 mM) in CHCl₃ and NaOH (0.1 M) in CH₃OH were prepared. Concentration of L2 and B2 were optimized

and fixed close to the gelation concentration as much as possible within instrument limits to observe genuine changes of added NaOH. In a typical UV/vis experiment, solution of these were taken in 3 mL quartz cuvettes in which, measured quantity of NaOH was added with the help of a micropipette. Further for fluorescence titration studies stock solutions of L2 and B2 in CHCl₃ (10 mM) and NaOH (0.1 M) in methanol were prepared. Fluorescence spectra of the complexes recorded at gelation concentration to find out changes during gelation as much as close to certainty on the experimental ground.

Energy Transfer and Antenna Effect Calculations: ALHSs study has been mentioned only for BODIHYs complexes and prolific results for ligands may not obtained. It is because of very less overlapping between the emission spectra of ligands with absorption spectra of RhB.

Further, to calculate the light harvesting ability of the system energy transfer efficiency was calculated from excitation spectra using equation 1.

$$\phi_{ET} = 1 - I_{DA}/I_D$$
(1)

where I_D and I_{DA} are the fluorescence intensity of the excitation of **B1/RhB**, **B2/RhB** and **GB₂/RhB** (donor and acceptor) and **B1**, **B2** and **GB₂** (donor) at 428, 421 and 430 nm, respectively.

The energy-transfer efficiency (Φ_{ET}) was calculated as 58%, 3.4% (in f_w 90%) and 26% (in chloroform), measured under the condition of [**B1**], [**B2**] and [**GB**₂] = 5 ×10⁻⁵ M, [RhB] = 1.8 ×10⁻⁶ M and λ_{ex} = 428, 421 and 430 nm, respectively.

The antenna effect (AE) was calculated based on the excitation spectra using equation 2.

$$I_a = (I_{A+D(\lambda ex)} - I_{D(\lambda ex)}) / I_{A+D(\lambda ex = 540 \text{ nm})}....(2)$$

where I_{A+D} (λ_{ex}) and I_{A+D} (λ_{ex} = 540 nm) are fluorescence intensities at 583, 585 and 577 nm with excitation of the donor at 428 (**B1**), 421 (**B2**) and 430 (**GB**₂) nm and direct excitation of the acceptor at 540 nm, respectively.

The antenna effect was calculated as 16.4, 15.6 (in f_w 90%) and 4.4 (in chloroform), measured under the condition of [**B1**], [**B2**] and [**GB**₂] = 5 ×10⁻⁵ M, [RhB] = 1.8 ×10⁻⁶ M.

Fig. S1. 1 H (a) and 13 C (b) NMR spectra of L1.

Fig. S2. 1 H (a) and 13 C (b) NMR spectra of L2.

Fig. S3. 1 H (a) and 13 C (b) NMR spectra of B1.

Fig. S4. 11 B (c) and 19 F (d) NMR spectra of B1.

Fig. S5. 1 H (a) and 13 C (b) NMR spectra of B2.

Fig. S6. 11 B (c) and 19 F (d) NMR spectra of B2.

Fig. S7. Mass spectra of L1 (a) and L2 (b).

Fig. S8. Mass spectra of B1 (a) and B2 (b).

Fig. S9. Solid state emission spectra of L1, L2, B1, B2 (a), L1 (b), L2 (c), B1 (d), B2 (e) under the UV radiation of 365 nm.

Fig. S10. Emission spectra of L1 (a), L2 (b), B1 (c) and B2 (d) in various solvent polarities $(c, 5.0 \times 10^{-5} \text{ M})$.

Fig. S11. Absorption spectra of L1 (a) and L2 (b) in THF/water fraction (c, 5.0×10^{-5} M).

Fig. S12. Emission spectra of L1 (a) and L2 (b) in THF/water fraction (c, 5.0×10^{-5} M).

Fig. S13. Absorption spectra of B1 (a) and B2 (b) in THF/water fraction (c, 5.0×10^{-5} M).

Fig. S14. Dynamic light scattering for L1, B1 and B2 (a) in the THF/water mixture ($f_w = 90\%$) and images of Tyndall effect in L1, B1 and B2 (b) in THF and THF/water mixture ($f_w = 90\%$) ($c, 5.0 \times 10^{-5}$ M).

Fig. S15. SEM images of aggregates of L1 (a), B1 (b) and B2 (c) formed in mixture of THF/water ($f_w = 90\%$) ($c, 5.0 \times 10^{-5}$ M).

Fig. S16. Emission spectra of L1 (a), B1 (b) and B2 (c) in CH₃OH/glycerol fraction (c, 5.0 × 10^{-5} M).

Fig. S17. A logarithmic view of time–resolved fluorescence of L1 and L2 in THF ($f_w = 50\%$) and THF/water ($f_w = 90\%$) ($c, 5.0 \times 10^{-5}$ M).

Fig. S18. Crystal packing patterns involving O····H (a) interaction in L1 and N····H (b) and $\pi \cdots \pi$ (c) interactions in L2.

Fig. S19. Crystal packing patterns involving C–H···H–C (a); O···H (b); S···H (c); π ···O (d) and S···O (e) interactions in **B1**.

Fig. S20. Crystal Packing patterns through F···H (a); N···H and S···N (b); π ···H (c); O···H (d) and π ···F (e) interactions in **B2**.

Fig. S21. Photographs of (a) GL_1 , (b) GL_2 in inverted vial under naked eye and optimization of stoichiometric ratio of L2: NaOH for creating a strong gel (pictures taken after 10 minutes).

Fig. S22. Photographs of (a) GB₁, (b) GB₂ in inverted vial under naked eye and optimization of stoichiometric ratio of B2: NaOH for creating a strong gel (pictures taken after 10 minutes).

Fig. S23. Absorption (a, L2; b, B2) and emission spectra (c, L2; d, B2) in presence of various equivalents of NaOH solution in chloroform.

Fig. 24. Dynamic frequency sweep for G' and G" for gel GL_2 (a) and GB_2 (d) with the applied strain, Dynamic shear stress of G' and G" for GL_2 (b) and GB_2 (e) at frequency of 1 rad s⁻¹ and 25 °C and Dynamic frequency sweep for G' and G" for gel GL_2 (c) and GB_2 (f).

Fig. S25. ¹H NMR titration spectra for L2 (CDCl₃) + NaOH (CD₃OD; 0.0 - 3.0 eq.).

Fig. S26. ¹H NMR titration spectra for B2 (CDCl₃) + NaOH (CD₃OD; 0.0 - 2.0 eq.).

Fig. S27. Mass spectrum of GL₂.

Fig. S28. Mass spectrum of GB₂.

Fig. S29. Crystal packing of B1 (a) and B2 (b) showing potential π -stacking interaction between the subsequent molecular units (distance measured from centre of centroid).

Fig. S30. DFT optimized structure of L1, L2, GL₁ and GL₂.

Fig. S31. UV–vis spectra of L1 (a), L2 (b), GL_1 (c) and GL_2 (d) obtained from TD–DFT calculations.

Fig. S32. UV–vis spectra of B1 (a), B2 (b), GB_1 (c) and GB_2 (d) obtained from TD–DFT calculations.

Fig. S33. DFT optimized structure of GB₁ and GB₂.

Fig. S34. Optimized structure of GB_1 (a) and GB_2 (b) (involvement and stabilization of Na⁺ ion in BODIHYs).

Fig. S35. (a) Fluorescence spectra of B2 with gradual addition of RhB ($\lambda_{ex} = 428$ nm) in THF/water (f_w 90%) (c, 5.0×10^{-5} M and [RhB] c, 0.0, 0.2×10^{-6} , 0.4×10^{-6} , 0.6×10^{-6} , 0.8×10^{-6} , 1.0×10^{-6} , 1.2×10^{-6} , 1.4×10^{-6} , 1.6×10^{-6} , 1.8×10^{-6} M); (b) emission spectra of B2 (50μ M), RhB+B2 (c, 5.0×10^{-5} M, [RhB] c, 1.0×10^{-4} M) and RhB (c, 2.5×10^{-5} M); (c) and (d) Change in the fluorescence decay profiles of B2 in the presence of RhB in THF/water (90%; v/v).

Fig. S36. (a) Fluorescence spectra of GB₂ with gradual addition of RhB ($\lambda_{ex} = 430$ nm) in THF/water (f_w 90%) (c, 5.0×10^{-5} M and [RhB] $c = 0.0, 0.2 \times 10^{-6}, 0.4 \times 10^{-6}, 0.6 \times 10^{-6}, 0.8 \times 10^{-6}, 1.0 \times 10^{-6}, 1.2 \times 10^{-6}, 1.4 \times 10^{-6}, 1.6 \times 10^{-6}, 1.8 \times 10^{-6}$ M); (b) emission spectra of GB₂ (50 µM), RhB+ GB₂ (c, 5.0×10^{-5} M, [RhB], $c = 1.0 \times 10^{-4}$ M) and RhB (c, 2.5×10^{-5} M); (c) and (d) Change in the fluorescence decay profiles of GB₂ in the presence of RhB in chloroform.

 Table S1: Crystal Data and Structure Refinement Parameters for L1, L2, B1 and B2.

Crystal	L1	L2	B1	B2
parameters				
Empirical	$C_{18}H_{14}N_4O_2S$	$C_{21}H_{18}N_4O_4S$	$C_{18}H_{13}BF_2N_4O_2S$	C21H17BF2N4O4S
formula				
Formula	350.08	422.10	398.19	470.26
weight				
Crystal system	Monoclinic	Triclinic	Monoclinic	Monoclinic
Space group	P 1 21/c 1	P – 1	P 1 21/n 1	P 1 21/c 1
a (Å)	18.7707(6)	6.1374(1)	7.0123(3)	25.7435(3)
b (Å)	4.4024(1)	9.8205(2)	19.0989(6)	4.7116(1)
c (Å)	22.1747(7)	17.4591(4)	27.0005(8)	36.3900(4)
α (deg)	90.00	105.187(2)	90.00	90.00
β (deg)	114.284(4)	91.749(2)	92.285(3)	95.568(1)
γ (deg)	90.00	94.127(2)	90.00	90.00
V (Å ³)	1670.29(10)	1011.58(4)	3613.2(2)	4393.0(12)
Color and	Yellow, needle	Brown, needle	Yellow, needle	Red, needle
habit				
Z	47	4	41	41
dcal (g/cm ³)	1.393	1.387	1.464	1.422
Temperature	293	293	293(2)	293(2)
(K)				
wavelength (Å)	1.54184	1.54184	1.54184	1.54184
μ (mm ⁻¹)	1.891	1.735	1.978	1.787
GOF on F ²	1.0295	1.140	1.039	1.039
R indices	$R_1 = 0.0857$	$R_1 = 0.1063$	$R_1 = 0.0926$	$R_1 = 0.0602$
(All data)	$wR_2 = 0.1248$	$wR_2 = 0.2972$	$wR_2 = 0.2352$	$wR_2 = 0.1418$
final R indices	$R_1 = 0.0450$	$R_1 = 0.0957$	$R_1 = 0.0788$	$R_1 = 0.0445$
$[I > 2\sigma(I)]$	$wR_2 = 0.1037$	$wR_2 = 0.2869$	$wR_2 = 0.2289$	$wR_2 = 0.1257$

B1	Bond Length (Å)	B1	Bond Angle (°)
S1-C12	S1–C12 1.714(5)		89.6(3)
S1-C18	1.739(6)	С3-01-С2	118.5(4)
F1–B1	1.375(9)	C7–N1–N2	113.6(4)
F2–B1	1.355(9)	B1-N1-N2	126.5(4)
O1–C2	1.445(6)	B1-N1-C7	124.3(5)
O1–C3	1.328(7)	02-C3-01	123.6(5)
O2–C3 1.198(7)		F2–B1–F1	111.8(6)
N4-C11	1.139(8)	N1-B1-F1	110.3(6)
N1-B1	1.572(8)	N1-B1-F2	110.5(5)
N3-B1	1.562(7)	N3-B1-F1	107.7(5)
N1–N2	1.317(6)	N3-B1-F2	109.6(6)
		N3-B1-N1	106.6(5)

 Table S2. Selected crystallographic parameter for B1

Table S3. Selected crystallographic parameter for B2

B2	Bond Length (Å)	B2	Bond Angle (°)
S1-C15	1.7147(18)	C15-S1-C16	89.84(9)
S1-C16	1.7456(19)	N2-N1-B1	126.35(14)
F1-B1	1.372(2)	O3-C10-O4	123.1(2)
F2–B1	1.373(2)	O2-C3-O1	123.6(2)
N3-B1	1.559(2)	F2-B1-N3	109.55(15)
O1–C3	1.316(3)	F2-B1-N1	110.67(15)
O2–C3	1.192(3)	F1–B1–F2	111.11(15)
O3-C10	1.194(3)	F1-B1-N3	109.22(15)
O4-C10	1.329(3)	F1-B1-N1	109.78(14)
		N3-B1-N1	106.39(13)
		N3-C15-S1	114.54(13)
		N3-C15-C13	120.28(16)

Short interactions	Distance (Å)	Short interactions	Distance (Å)
in B1		in B2	
С–Н…Н–С	2.392	N····H	2.633, 2.696
О…Н	2.362	F … H	2.651, 2.610
S…H	2.976	S…N	2.886
π…Ο	3.126	π ···H	2.886
S…O	2.985	О…Н	2.596, 2.599
		$\pi \cdots \mathbf{F}$	2.929, 2.930

 Table S4. Some important short interactions in B1 and B2.

 Table S5. Gelation behaviour of L1–L2 and B1–B2.

Sr.	Solvents	Solubility of	State on	Solubility of B1	State on
No.		L1 and L2	addition of	and B2	addition of
			NaOH		NaOH
			solution		solution
1	CHCl ₃	Soluble	Suspension –	Soluble	Suspension –
			L1		B 1
			Gel – L2		Gel – B2
2	CH ₂ Cl ₂	Soluble	Suspension	Soluble	Suspension
3	CH ₃ CN	Soluble		Soluble	
4	THF	Soluble		Soluble	
5	1,4-dioxane	Soluble		Sparingly	
				soluble	
6	CH ₃ COCH ₃	Soluble	Suspension	Soluble	Suspension
7	DMF	Soluble	Sol	Soluble	
8	DMSO	Soluble	Sol	Soluble	Sol
9	Ethyl	Soluble	Suspension	Soluble	
	Acetate				
10	CH ₃ OH	Soluble		Less Soluble	
11	C ₂ H ₅ OH	Less Soluble		Less Soluble	
12	Hexane	Insoluble		Insoluble	
13	C ₆ H ₆	Insoluble		Less soluble	

	Experimen tal Wavelengt	Calculated Wavelengt h (nm)	Oscillator Strength (f)	Energy (eV)	% Contributi on	Assignments
	h (nm)					
L1	403	363	1.236	3.41	88	$H \rightarrow L$
L2	392	358	1.13	3.52	85	$H \rightarrow L$
B1	428	391	0.7242	3.28	87; 4; 4	$H \rightarrow L; H-8 \rightarrow$
						$L, H-4 \rightarrow L$
B2	421	370	1.06	3.41	88;4	$H \rightarrow L; H-4 \rightarrow$
						L

Table S6. Experimental/theoretical absorption wavelength, energy, oscillation strength (f) and assignments

References

- 1. D. D. Perrin, W. L. F. Armango and D. R. Perrin, Purification of Laboratory Chemicals, Pergamon, Oxford, U. K., 1986.
- 2. Sheldrick GM. SHELXL–97, Program for X-ray Crystal Structure Refinement, Gottingen University, Gottingen, Germany, 1997.
- **3.** Sheldrick GM. SHELXS–97, Program for X-ray Crystal Structure Solution, Gottingen University, Gottingen, Germany, 1997;
- Sheldrick GM. Crystal structure refinement with SHELXL Acta Crystallogr., Sect. C: Struct. Chem, 2015, 71, 3–8.
- 5. R. Ditcrfield, W. J. Herre, and J. A. Pople, J. Chem. Phys., 1971, 54, 724–729.
- 6. W. Kohn and L. Sham, *Phys. Rev.*, 1965, 140, 1133–1138.
- 7. A. D. Becke, J. Chem. Phys., 1992, 97, 9173–9178.
- A. Kumar, R. S. Singh, A. Kumar, A. Ali, A. Biswas, and D. S. Pandey, *Chem. Eur. J.*, 2016, 22, 13799–13804.