Supporting Information

Rare earth-based Cs₂NaRECl₆ (RE = Tb, Eu) halide double perovskite nanocrystals with multicolor emissions for anticounterfeiting and LED applications

Yao Li,^{‡ab} Qingxing Yang,^{‡ab} Huwei Li,^{ac} Xinyu Fu,^{ab} Hongxia Yue,^{ab} Zheyu Li,^{ab} Jing Feng,*^{ab} and Hongjie Zhang*^{abd}

^a State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.

^b School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China

^c College of Chemistry, Jilin University, Changchun 130012, China

^d Department of Chemistry, Tsinghua University, Beijing 100084, China

‡ These authors contributed equally and should be regarded as co-first authors.

Keywords: Halide double perovskite, Rare earth, Multicolor emissions, Anticounterfeiting, Light-emitting diodes

Fig. S1 The size distribution histograms of $Cs_2NaTbCl_6$ and $Cs_2NaEuCl_6 NCs$.

Fig. S2 Survey XPS spectra of $Cs_2NaTbCl_6$ (a) and $Cs_2NaEuCl_6$ (c). High-resolution XPS spectra of $Cs_2NaTbCl_6$ (b) and $Cs_2NaEuCl_6$ (d).

Fig. S3 (a) High-angle annular dark-field (HAADF) image of Cs₂NaTbCl₆ NCs. (b-e) STEM-EDS elemental mappings of Cs, Na, Tb and Cl elements colocalized in Cs₂NaTbCl₆ NCs.

Fig. S4 (a) High-angle annular dark-field (HAADF) image of Cs₂NaEuCl₆ NCs. (b-e) STEM-EDS elemental mappings of Cs, Na, Eu, and Cl elements colocalized in Cs₂NaEuCl₆ NCs.

Fig. S5 EDX spectra of (a) $Cs_2NaTbCl_6$ and (b) $Cs_2NaEuCl_6 NCs$.

Fig. S6 UV-vis absorption spectra of $Cs_2NaTbCl_6$ and $Cs_2NaEuCl_6 NCs$.

Fig. S7 The PL decay curves of $Cs_2NaTbCl_6 NCs$ monitored at (a) 430 nm ($\lambda_{ex} = 375$ nm) and (b) 548 nm ($\lambda_{ex} = 279$ nm).

Fig. S8 The PL decay curves of Cs₂NaEuCl₆ NCs monitored at (a) 430 nm (λ_{ex} = 375 nm) and (b) 593 nm (λ_{ex} = 330 nm).

Fig. S9 Schematic diagram of the possible luminescence mechanism of $Cs_2NaRECl_6$ (RE = Tb, Eu) NCs.

Fig. S10 PL peak changes of $Cs_2NaTbCl_6 NCs$ under 360 nm excitation from 100-300 K (blue line: host emission, green line: Tb^{3+} ions emission).

Fig. S11 PL peak changes of $Cs_2NaTbCl_6 NCs$ under 279 nm excitation from 100-300 K (blue line: host emission, green line: Tb^{3+} ions emission).

Fig. S12 PL peak changes of $Cs_2NaEuCl_6 NCs$ under 360 nm excitation from 100-300 K (blue line: host emission, red line: Eu³⁺ ions emission).

Fig. S13 PL peak changes of $Cs_2NaEuCl_6 NCs$ under 330 nm excitation from 100-300 K (blue line: host emission, red line: Eu³⁺ ions emission).

Fig. S14 Electroluminescence spectra of the LED devices based on (a) $Cs_2NaEuCl_6 NCs$, (b) $Cs_2NaTbCl_6 NCs$, and (c) $Cs_2NaEuCl_6$ and $Cs_2NaTbCl_6 NCs$. The insets show the corresponding photographs of LED devices driven by 20 mA forward current.