SUPPLEMENTARY INFORMATION

for

Stabilization of the first-order phase transition character and Enhancement of the Electrocaloric Effect by NBT substitution in BaTiO₃ ceramics

Merve Karakaya^a, İrem Gürbüz^{a,b}, Lovro Fulanovic^c, Umut Adem^a

^aDepartment of Materials Science and Engineering, İzmir Institute of Technology, Urla, 35430, İzmir

Turkey

^bDepartment of Chemistry, Aix-Marseille University, 52 Avenue Escadrille Normandie Niemen, 13013, Marseille, France.

°Nonmetallic Inorganic Materials, Department of Materials and Earth Sciences, Technical University of

Darmstadt, Peter-Grünberg-Straße 2, 64287 Darmstadt, Germany

Fig. S1. Temperature dependence of the dielectric constant and imaginary permittivity at 0.1, 1, 10 and 100 kHz of (1-x)BaTiO₃-xNa_{0.5}Bi_{0.5}TiO₃ samples: (a) x = 0.05, (b) x = 0.10, (c) x = 0.20, (d) x = 0.30.

Fig. S2. The plot of $\ln(1/\epsilon - 1/\epsilon_m)$ as a function of $\ln(T-T_m)$ for all compositions, showing γ coefficients and linear fits.

Fig. S3. Temperature dependent P(E) hysteresis loops and strain-electric field curves at selected temperatures. (a, b) x = 0.05, (c, d) x = 0.10, (e, f) x = 0.20, (g, h) x = 0.30.

Fig. S4. Temperature and electric field dependence of directly measured ΔT_D for (a) x = 0.1, (b) x = 0.2 and (c) x = 0.3 samples.

Fig. S5. Temperature and electric field dependence of directly measured effective EC cooling ΔT_{eff} for (a) x = 0.1, (b) x = 0.2 and (c) x =0.3 samples. $\Delta T_{\text{eff}} = \Delta T_{\text{D}} - \Delta T_{\text{JH}}$

Fig. S6. Directly measured ΔT for 0.7BT-0.3NBT sample close to the dielectric maximum temperature as a function of time as the electric field was turned on and off. $\Delta T_{\rm D}$ is the sum of the maximum effective EC cooling ($\Delta T_{\rm eff}$) and the Joule heating ($\Delta T_{\rm JH}$).

Fig. S7. Directly measured ΔT for 0.8BT-0.2NBT sample close to the dielectric maximum temperature as a function of time as the electric field was turned on and off.

Fig. S8. Temperature dependence of specific heat of (1-x)BaTiO₃-xNa_{0.5}Bi_{0.5}TiO₃ samples.

Fig. S9. P(E) hysteresis loops of 0.95BT-0.05NBT at and slightly above T_{C} .

Fig. S10. P(E) hysteresis loops of 0.9BT-0.1NBT at and slightly above T_C .

Fig. S11. P(E) hysteresis loops of 0.8BT-0.2NBT at and slightly above T_C .

Fig. S12. P(E) hysteresis loops of 0.7BT-0.3NBT at and slightly above T_{C} .