Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Complementary GIXRD Analysis

Figure S1. The GIXRD pattern of TiO₂ nanobelts grown by catalyst-assisted PLD.

Table S1. Comparison of the position shifts of the two prominent (111) and (200) peaks in $Hf_{1-x}Ti_xO_2$ nanospikes relative to their respective peaks in the undoped HfO_2 NWs.

Plane Index	HfO2 Nanowires 2θ (°)	Hf _{0.99} Ti _{0.01} O ₂ Nanopikes		Hf _{0.90} Ti _{0.10} O ₂ Nanopikes		Hf _{0.75} Ti _{0.25} O ₂ Nanopikes	
		2θ (°)	Shift (°)	2θ (°)	Shift (°)	2θ (°)	Shift (°)
(1 1 1)	31.71	31.73	0.02	31.80	0.09	31.75	0.04
(200)	34.37	34.38	0.01	34.44	0.07	34.44	0.07

EDS Elemental Analysis of Hf_{1-x}Ti_xO₂ Nanospikes

Figure S2. (a) STEM-EDS elemental maps for (a1) Hf, (a2) O, (a3) Ti, (a4) Au, and (a5) their overlaps of a $Hf_{0.75}Ti_{0.25}O_2$ nanospike grown on a Sn-GNI/Ox-Si substrate at 770 °C, along with (a6) its STEM High-Angle Annular Dark Field (STEM-HAADF) image. The corresponding (b1) EDS spectrum of the elemental maps, and (b2) the EDS linescan profiles of Hf, O, Ti and Au along the nanospike marked in (a6).

Figure S3. (a) STEM-EDS elemental maps for (a1) Hf, (a2) O, (a3) Ti, (a4) Au, and (a5) their overlaps of a $Hf_{0.50}Ti_{0.50}O_2$ nanospike grown on a Sn-GNI/Ox-Si substrate at 770 °C, along with (a6) its STEM High-Angle Annular Dark Field (STEM-HAADF) image. The corresponding (b1) EDS spectrum of the elemental maps, and (b2) the EDS linescan profiles of Hf, O, Ti and Au along the nanospike marked in (a6).

Comparison of Magnetic Properties of $Hf_{1-x}Ti_xO_2$ Nanostructures with Previous Studies on HfO_2 and ZrO_2

Sample	Measurement Temperature (K)	M _s (emu/g)	M _r (emu/g)	H _c (Oe)
	300	1.2×10 ⁻³	0.8×10 ⁻⁴	29
HIO_2 nanowires"	2	2.5×10 ⁻³	2.0×10 ⁻⁴	160
Uf Ti O nonceriles?	300	1.4×10-3	3.2×10-4	312
$H_{0.99} \Pi_{0.01} O_2$ nanospikes"	2	4.2×10 ⁻³	7.3×10 ⁻⁴	362
	300	2.3×10 ⁻³	3.2×10 ⁻⁴	431
$H1_{0.90} H_{0.10} O_2$ nanospikes"	2	4.8×10 ⁻³	7×10 ⁻⁴	547
T:O Nevel alter	300	3.9×10 ⁻³	1.7×10-3	702
110 ₂ Nanobells"	2	21.1×10 ⁻³	2.5×10-3	597
HfO ₂ thin film ¹	300	1-100.1	-	-
HfO ₂ thin film ²	300	3	-	-
	300	2	-	115
HfO_2 thin film ³	1.8	5	-	-
	300	1.3×10 ⁻²	-	300
HfO ₂ colloidal nanorods ⁴	10	2.3×10 ⁻²	-	50
7.0	300	5.9	1.5	99
$2rO_2$ nanowires ⁵	5	8.5	2	100
7.0	300	1.8	0.12	77
LrO_2 nanoclusters ^o	5	1.9	0.2	120

Table S2. Comparison of magnetic properties of $Hf_{1-x}Ti_xO_2$ ($0 \le x \le 1$) nanostructures with those of ZrO_2 and HfO_2 in previous studies.

^aThis work.

Surface Analysis

Figure S4. Electron energy loss spectra of (a) HfO_2 nanowires, (b) $Hf_{0.99}Ti_{0.01}O_2$ nanospikes, (c) $Hf_{0.75}Ti_{0.25}O_2$ nanospikes and (d) TiO_2 nanobelts. Insets show the determination of the bandgap by using linear fittings on the onsets of loss signal spectra.

Additional Magnetization Measurements

Figure S5. Magnetization (M) as a function of applied magnetic field (H) of undoped HfO₂ nanowires.⁷

Figure S6. Magnetization (M) as a function of the applied magnetic field (H) of bare Si substrate, measured at 2 K and 300 K.

Surface Analysis and Depth-profiling

Figure S7. XPS survey spectra of (a) $Hf_{0.99}Ti_{0.01}O_2$ nanospikes (b) $Hf_{0.90}Ti_{0.10}O_2$ nanospikes (c) $Hf_{0.75}Ti_{0.25}O_2$ nanospikes, and (d) TiO_2 nanobelts. The insets show expanded views of the Mn, Fe and Co spectral regions.

Figure S8. XPS depth-profiling survey spectra of the Si substrate with increasing Ar sputtering time. Insets show expanded views of the Mn, Fe, and Co spectral regions.

Figure S9. TOF-SIMS depth profile of the Si substrate during 700 s of Ar sputtering. With the exception of Si⁺, all the other ion signals are found to overlap with one another.

References

- J. M. D. Coey, M. Venkatesan, P. Stamenov, C. B. Fitzgerald and L. S. Dorneles, *Phys. Rev. B Condens. Matter Mater. Phys.*, 2005, **72**, 024450.
- N. H. Hong, J. Sakai, N. Poirot and V. Brizé, *Phys. Rev. B Condens. Matter Mater. Phys.*, 2006, 73, 132404.
- 3 K. K. Bharathi, S. Venkatesh, G. Prathiba, N. H. Kumar and C. V. Ramana, *J. Appl. Phys.*, 2011, **109**, 07C318.
- 4 E. Tirosh and G. Markovich, *Adv. Mater.*, 2007, **19**, 2608–2612.
- 5 M. A. Rahman, S. Rout, J. P. Thomas, D. McGillivray and K. T. Leung, *J. Am. Chem. Soc.*, 2016, **138**, 11896–11906.
- 6 X. Guan, S. Srivastava, J. P. Thomas, N. F. Heinig, J. S. Kang, M. A. Rahman and K. T. Leung, *ACS Appl. Mater. Interfaces*, 2020, **12**, 48998–49005.
- 7 M. Beedel, M. A. Rahman, H. Farkhondeh, J. P. Thomas, L. Zhang, N. F. Heinig and K. T. Leung, *Mater. Today Nano*, 2024, **28**, 100510.