Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Eco-friendly Luminescent solar concentrator with high photon transport efficiency based on Bi-doped Cs₂Na_{0.6}Ag_{0.4}InCl₆ quantum dots

Shaohua Li,^{a,b} Yi Zhang,^{b,d} Zihan Song,^b Zida Zheng,^b Xiaowei Zhang^{*,b,e} and Xueyun Liu^{*,a,c}

^aLaboratory of Infrared Materials and Devices, Advanced Technology Research Institute, Ningbo University, Ningbo 315211, China
^bDepartment of Electrical Engineering and Computer Science, Ningbo University, Ningbo 15211, China
^cNingbo Institute of Oceanography, Ningbo, 315832, China
^dSchool of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China
^eNational Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China

PL QY calculations for Bi-doped Cs₂Na_{0.6}Ag_{0.4}InCl₆ DP QDs

The PL QY of Bi-doped Cs₂Na_{0.6}Ag_{0.4}InCl₆ QDs was measured with the integrating sphere and then directly calculated by the following equation,

$$PLQY = \frac{N_{PL}}{N_{abs}} = \frac{\int (I_{sample}(\lambda) - I_{reference}(\lambda)) d\lambda}{\int (E_{sample}(\lambda) - E_{reference}(\lambda)) d\lambda},$$
(S1)

where I_{sample} and E_{sample} are the intensity of the emission and excitation light after correction for the QD samples, respectively. $I_{\text{reference}}$ and $E_{\text{reference}}$ are the intensity of the emission and excitation light after correction for the reference samples (pure n-hexane solution) in a quartz cuvette, respectively. The $\eta_{\text{LSC,PL}}$ of LSCs (by encapsulating the QDs in the PDMS) was characterized in the same way as that of the QDs solution.

The haze of LSC

Total transmission (T_t) and diffusion transmission (T_d) data in Fig.S7. a are used to calculate the haze of LSC in visible light. A double-beam Shimadzu UV-3600 spectrophotometer with the integrating sphere is used to measure the T_t and T_d . These measurements are taken over the wavelength range from 250 nm to 800 nm. The haze is calculated as follows:

$$Haze = \frac{T_d}{T_t}$$
(S2)

The external quantum efficiency (η_{ext}) of LSC

The η_{ext} can be calculated as:

$$\eta_{\text{ext}} = \eta_{\text{abs}} \times \eta_{\text{int}} = (1 - R) \frac{\int_0^\infty AM 1.5G(\lambda)(1 - e^{-\alpha(\lambda)d})d\lambda}{\int_0^\infty AM 1.5G(\lambda)\lambda} \times \eta_{\text{int}},$$

where η_{abs} is the absorption efficiency of LSC, AM1.5G(λ) is the solar radiation intensity obtained using a solar simulator AM1.5G, $\alpha(\lambda)$ is the absorption coefficient of the LSC, *d* is the thickness of the LSC (0.5 cm), *R* is reflectivity (0.03 in this work).

Fig. S1 Histogram of the size distribution of (a) undoped and (b) Bi-doped Cs₂Na_{0.6}Ag_{0.4}InCl₆ QDs.

Fig. S2 TEM-EDX elemental images of Bi-doped Cs₂Na_{0.6}Ag_{0.4}InCl₆ QDs.

Fig. S3 PL decay curves of (a) undoped and (b) Bi-doped Cs₂Na_{0.6}Ag_{0.4}InCl₆ QDs.

Fig. S4 XRD pattern of Bi-doped Cs₂Na_{0.6}Ag_{0.4}InCl₆ QDs with Bi³⁺ cation concentration.

Fig. S5 Absorption (purple line) and PL (orange line) spectra of Bi-doped Cs₂Na_{0.6}Ag_{0.4}InCl₆ QDs. Grey shading is the AM 1.5G solar spectrum and the red-dash line is a typical Si PV cell *EQE* spectrum (the PV cell is purchased from ANGUI company of Ningbo, and its *EQE* spectrum is tested by a solar cells energy conversion system CEL-QPCE1000).

Fig. S6 The photograph of LSC with 3 mg/ml QDs under (a) ambient light; (b) UV lamp irradiation

Fig. S7 (a-d) The measurements of the edge-emission efficiency (η_{edge}) of LSCs with the different Bi-doped Cs₂Na_{0.6}Ag_{0.4}InCl₆ QDs concentrations. The black lines are the total PL intensity from the unmasked LSCs. The red lines are the face PL intensity from the LSC with the four masked edges using black tapes. The blue line is defined as the edge PL intensity calculated as $I_{edge} = I_{all} - I_{face}$. Finally, $\eta_{edge} = I_{edge} / I_{all}$.

Fig. S8 (a) The schematic of the T_t and T_d measurements. (b) The T_t and T_d of the LSC with 3 mg/ml Bidoped Cs₂Na_{0.6}Ag_{0.4}InCl₆ QDs. (c) The haze of as-fabricated LSCs as a function of QD concentration.

Fig. S9 η_{abs} and η_{int} of LSCs with different QD concentrations.

QDs concentration (mg/ml)	J _{sc-LSC} (mA/cm ²)	V _{oc} (V)	FF (%)	PCE (%)	η _{opt} (%)
1.5	2.41	0.50	60.08	2.30	2.34
3	2.64	0.50	60.25	2.56	2.57
4.5	2.30	0.50	60.09	2.19	2.25
6	2.30	0.50	59.92	2.19	2.23

Table S1 Photovoltaic parameters of LSC-PV systems

	CIE1931			
QD concentration (mg/ml)	X	у	CRI	AVT (%)
1.5	0.3357	0.3356	95.6	93.68
3	0.3372	0.3369	95.5	91.55
4.5	0.3378	0.3376	95.6	88.88
6	0.3403	0.3398	95.8	85.62
Quartz glass	0.3434	0.3460	97.0	82.85

 Table S2 Aesthetic quality parameters of as-fabricated LSCs.