Supporting Information

Construction of Photoluminescence-Afterglow Dual-Mode White Emission from Carbon Dots via Förster Resonance Energy Transfer

Yuqing Huang,^{+a} Yulong Zhu,^{+a} Chao Li,^b Guangsong Zheng,^{*c} Chenxi Zhang,^a Yang Nan,^a Qing Lou,^c Xu Chen,^c Yongsheng Zhu^{*b} and Jinyang Zhu^{*a}

^aState Centre for International Cooperation on Designer Low-Carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, P. R. China ^bCollege of Physics and Electronic Engineering, Nanyang Normal University, Nanyang

⁶College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China

^cKey Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, P. R. China

E-mail: 13253315403@163.com (G. Zheng), yongshengzhu0001@163.com (Y. Zhu), zhujinyang1127@zzu.edu.cn (J. Zhu)

Supporting Figures

Fig. S1. Schematic diagram of the synthesis of w-CDs powder.

Fig. S2. Photoluminescence quantum yield (PLQY) of w-CDs powder, excited with 365 nm UV lamp.

Fig. S3. Changes in intensity of w-CDs powder in one hour, excited with 365 nm UV

lamp.

Fig. S4. Images of b-CDs powder, taken before and after the excitation of 365 nm UV lamp.

Fig. S5. Photoluminescence (PL) and room temperature phosphorescence (RTP) emission spectra of b-CDs powder, excited with 365 nm UV lamp.

Fig. S6. The Commission Internationale de l'Eclairage (CIE) chromaticity diagram shows the PL and RTP coordinates of the b-CDs powder in Fig. S5.

Fig. S7. PL emission spectra of o-CDs and w-CDs powder, excited with 365 nm UV lamp.

Fig. S8. Temperature-dependent afterglow emission spectra of w-CDs powder, excited with 365 nm UV lamp.

Fig. S9. Temperature-dependent decay afterglow spectra of w-CDs powder at donor peak (a) and acceptor peak (b).

Fig. S10. Time-resolved RTP decay spectrum of b-CDs powder.

Fig. S11. RTP excitation-emission mapping of b-CDs powder.

Fig. S12. Afterglow emission spectra of o-CDs and w-CDs powders, excited with 365 nm UV lamp.

Fig. S13. PL emission spectra of w_1 -CDs, w_2 -CDs, and w_3 -CDs powders, respectively, excited with 365 nm UV lamp.

Fig. S14. Decay afterglow spectra of w_1 -CDs, w_2 -CDs and w_3 -CDs powders at donor peak.

Fig. S15. Changes in color temperature of the WLEDs in one hour, excited with 365 nm.