Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supporting Information

FeVO₄-based solution- processed all oxide self-biased fast photodetectors.

Parul Garg, Priya Kaith, Vishal Nagar, Ashok Bera*

AFFILIATION

Department of Physics, Indian Institute of Technology Jammu, Jammu and Kashmir, 181221

India

Author to whom correspondence should be addressed: <u>ashok.bera@iitjammu.ac.in</u>

FIG. S1. Three-dimensional AFM image of FeVO₄ (FVO) thin film on a quartz substrate.

Table S1. Atomic percentages of the constituent elements in the solution-processed FVO thin films.

Element name	Atomic (%)		
Fe	16.04		
V	15.09		
0	62.56		
С	6.31		

FIG. S2. (a) Cross-section FESEM image of FVO-based photodetector. Corresponding EDS elemental mapping graphs of (b) Au, (c) Ni, (d) Fe, (e) V and (f) Sn are present in the bottom FTO substrate.

FIG. S3. The schematic of the electrical measurement for n-FVO/p-NiO photodetector.

FIG. S4. *I-V* characteristics of the n-FVO/p-NiO heterojunction device under dark and visible light (445 nm, 10 mW cm⁻²).

Fig. S5. I-V characteristics of FTO/NiO/Au device under dark and 445 nm light illumination.

Fig. S6. The photovoltage-time curve with the change of incident light intensity.

Fig. S7. Histogram showing the average responsivity (R) extracted from the J-V curves of 30 FVObased photodetectors.

Device	Wavelength	Intensity	Photoresponsivity	Detectivity	Rise	Fall	Ref.
	(nm)	(mW	(mA W ⁻¹)	(Jones)	time	time	
		cm ⁻²)			(ms)	(ms)	
BiFeO ₃ /XTiO ₃	500	8	1.3	3×10^{10}	19	23	1
(X-Sr, Zn, Pb)							
CuBi ₂ O ₄ /PZT	425	0.00751	0.24	2.40×10^{10}	24	46	2
ZnO NRs/Cu ₂ O	425	25	8.2	-	140	360	3
Co ₃ O ₄ -ZnO	520		8.3	3.14×10 ¹²	20	90	4
FVO/NiO (This work)	445	6.5	18	5.3×10^{10}	46	47	
Au/BiVO ₄ /Pt	520	150	0.3	5×10 ⁹	16.5	5.8	5
Pt/LNO/Bi1.5FeO3/Au	500	0.2	1.515	1.35×10 ¹¹	6	15	6

Table S2. Comparison diagram of representative solution-processed self-biased all-oxide photodetectors.

References

- (1) Li, Z.; Zhao, Y.; Li, W.; Peng, Y.; Zhao, W.; Wang, Z.; Shi, L.; Fei, W. J. Mater. Chem. A **2022**, *10*, 8772–8783.
- (2) Ashtar, M.; Marwat, M. A.; Li, Z.; Yang, Y.; Cao, D. J. Lumin. 2023, 260, 119855.
- (3) Bai, Z.; Zhang, Y. J. Alloys Compd. **2016**, 675, 325–330.
- (4) Wang, H.; Wang, H.; Li, L.; Gu, Y.; Kim, B.-H.; Huang, J. ACS Appl. Electron. Mater. 2023, 5, 3224–3231.
- (5) Shi, L.; Li, Z.; Zhao, W.; Wang, Z.; Peng, Y.; Gao, C.; Hua, W.; Wang, J.; Yang, X.; Fei, W.; Zhao, Y. *Nano Energy* **2023**, *114*, 108594.
- (6) Li, Z.; Zhao, Y.; Li, W.; Zhao, W.; Wang, Z.; Peng, Y.; Shi, L.; Fei, W. Ceram. Int. 2022, 48, 2811–2819.