Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Enhancement of Heat Dissipation in β-Ga₂O₃ Schottky Diodes through Cu-filled Thermal Vias: Experimental and Simulation Investigations

Younghyun You^{1,2}, Hui Won Eom³, Jehwan Park¹, Myung Jun Kim^{3,*}, and Jihyun Kim^{1,*}

¹Department of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea

² Advanced Package Process Development Team, Samsung Electronics, Suwon 16677, Republic of Korea

³ School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea

*Corresponding authors: Myung Jun Kim (<u>mjkim09@g.skku.edu</u>) and Jihyun Kim (<u>jihyunkim@snu.ac.kr</u>)

Figure S1. Infrared camera images of β -Ga₂O₃ Schottky diodes (a) without and (b) with thermal via after application of a 1.2 W/mm³ power.

Without thermal via, the temperature uniformly increased by approximately 4 °C from room temperature in all areas of the ring-shaped channel (yellow, ~29 °C). When a thermal via was used, there was a difference in temperature change in the channel area depending on the distance from the thermal via. In the channel region farthest from the thermal via (~280 μ m), the same temperature was observed as that attained without the thermal via (yellow, ~29 °C). In the channel area located next to the thermal via, the temperature increase was relatively lower (red, ~26 °C). This difference may be because the heat was released at a faster rate to the outer parts of the device in regions close to the thermal via.

Figure S2. Simulated image of β -Ga₂O₃ Schottky diode with taper-free thermal via after application of a power of 5.7 W/mm³.