Electronic Supplementary Information

High-quality indium-gallium-zinc oxide films synthesized by

atomic layer deposition using a single cocktail precursor

based on a liquid-delivery system and their applications for

transistors and inverters

Sang-Joon Park^a, Se-Ryong Park^a, Woo-Seok Jeon^b, Jong Mu Na^c, Jun Hyung Lim^b, Sukhun

Ham^c, Yung-Bin Chung^{*b} and Tae-Jun Ha^{*a}

^a Department of Electronic Materials Engineering, Kwangwoon University, Seoul 01897,

Republic of Korea

^b Samsung Display Co., LTD., Gyeonggi-Do 17113, Republic of Korea

^c JI-Tech Co., Ltd., Jeollabuk-do 54002, Republic of Korea

*Corresponding author E-mail address: taejunha0604@gmail.com,

yungbin.chung@samsung.com

Fig. S1 Atomic concentration of In, Ga, Zn, and O in 20 ALD-derived IGZO films, extracted from XPS spectra.

Fig. S2. GPC as a function of dose time and flow rate.

Fig. S3. Cross-sectional SEM images of the ALD-derived IGZO films synthesized with (a) 100, (b) 160, and (c) 200 deposition cycles.