Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supporting information for:

Surface chemistry in atomic layer deposition of AlN thin films from Al(CH₃)₃ and NH₃ studied by mass spectrometry

Pamburayi Mpofu¹, Houyem Hafdi¹, Pentti Niiranen¹, Jonas Lauridsen², Oscar Alm², Tommy Larsson², Henrik Pedersen^{1*}

¹Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden

² Seco Tools AB, SE-737 82, Fagersta, Sweden

*Corresponding author: henrik.pedersen@liu.se

Stoichiometry of deposited films

Elemental composition of the deposited films was measured by XPS. The measurements show close to 1:1 Al:N stoichiometry for both processes, with \pm 5% error bar. Table S1 summarizes the elemental composition from XPS after 600 s of sputter cleaning.

Table S1: Overview of optimized process parameters and film stoichiometry from XPS.

Process	TMA pulse time (s)	NH ₃ pulse time (s)	Deposition temperature (°C)	Al (at.%)	N (at.%)	O (at.%)	C (at.%)	Al:N ratio
TMA plasma	0.1	12	300	49.5	47.6	1.2	1.7	1:0.96
	0.1	12	400	47.9	44.6	4.1	3.4	1:0.93
TMA thermal	0.1	18	350	47.5	45.3	4.4	2.8	1:0.95
	0.1	18	400	48.6	44.4	3.6	3.4	1:0.91

Verification of Al-N bonding in the film was also done using XPS. Characteristic peaks of Al-N at 74.1 eV in Al 2p core level spectra can be seen in Fig. S1, for plasma ALD (Fig. S1a) and thermal ALD (Fig. S1b).¹ An additional peak, assigned to metallic Al can be seen at 72.8 eV (plasma) and 72.5 eV (thermal),² which are attributed to ion induced sputtering effects when sputtering the XPS.³

Figure S1: High resolution XPS of Al 2p core level spectra for the plasma process (a) deposited at 300 °C and thermal process (b) deposited at 350 °C.

Crystallinity of deposited films

The crystallinity of the deposited AlN films was investigated using θ -2 θ XRD. Fig. S2 shows that all three peaks for both the plasma and thermal processes which are in good agreement with the (100), (002), and (101) peaks of wurtzitic AlN (ICSD no. 01-070-0354). The films are thus suggested to be polycrystalline with no preferred orientation or texture.

Figure S2: X-ray diffraction patterns of plasma and thermal processes deposited at 300 and 350 °C respectively.

Arrhenius plots

Figure S3. Arrhenius plots used to approximate the activation energies for the methane evolution during TMA pulses (a) and NH_3 pulses (b).

Nucleation delays

Figure S4: Nucleation delays between plasma (a) and thermal (b) processes showing that 21 and 130 ALD cycles (x-intercept values) are needed, respectively, for nucleation and film growth to begin.

References

- Jose, F.; Ramaseshan, R.; Dash, S.; Bera, S.; Tyagi, A. K.; Raj, B. Response of Magnetron Sputtered AlN Films to Controlled Atmosphere Annealing. *J. Phys. D. Appl. Phys.* 2010, 43, 075304.
- Hoque, E.; Derose, J. A.; Kulik, G.; Hoffmann, P.; Mathieu, H. J.; Bhushan, B.
 Alkylphosphonate Modified Aluminum Oxide Surfaces. *J. Phys. Chem. B* 2006, *110*, 10855–10861.
- Xie, F. Y.; Gong, L.; Liu, X.; Tao, Y. T.; Zhang, W. H.; Chen, S. H.; Meng, H.; Chen,
 J. XPS Studies on Surface Reduction of Tungsten Oxide Nanowire Film by Ar +
 Bombardment. J. Electron Spectros. Relat. Phenomena 2012, 185, 112–118.