## **Supporting Information**

## A Series of Bimetallic Ammonium RbEu Nitrates Exhibiting Switchable Dielectric Constant and Photoluminescence Properties<sup>†</sup>

Hua-Kai Li, Li-Ping Wang, Zong-Ze Cui, Qi Xu, Liang-Liang Zou, Na Wang, Le-Ping

Miao, Heng-Yun Ye,\* and Chao Shi\*

Chaotic Matter Science Research Center, International Institute for Innovation, Jiangxi University of Science and Technology, Nanchang 330000, Jiangxi Province, P.R. China. \*Foundation Item: National Natural Science Foundation of China (No. 22175079 and 22275075) and Natural Science Foundation of Jiangxi Province (No. 20225BCJ23006, 20224ACB204002 and 20204BCJ22015). *E-mail address*: 15150517670@163.com

Tel.: 0791-83858326

## More characterizations



Fig S1. The macroscopic shape of the single crystal of crystal (a) 1, (b) 2 and (c) 3.



**Fig S2.** The powder X-ray diffraction (PXRD) patterns for 1–3 measured at room temperature. Notes: blue lines (Measurement); red lines (Simulation).



Fig S3. The thermogravimetric (TG) curves of 1–3.



Fig S4. FTIR spectra of 1–3.



**Fig. S5.** (a) Variable-temperature PXRD spectra of **3** collected on cooling mode. (b) Falsecolor maps extracted at 5–50° intervals of the temperature-variable PXRD pattern.



**Fig S6.** Hirshfeld surface analysis of (a) Cl, (b) Br and (c) I atoms substitutions, interaction forces between organic cations and nitric radicals. Red, white and blue regions of the Hirshfeld surfaces correspond to positive (close contact), neutral and negative isoenergies, respectively. In the fingerprint plots, di and de denote the distances to the nearest atom inside and outside of the Hirshfeld surface, respectively.



Fig S7. The photoluminescence properties of 2 and 3 at room temperature. Emission ( $\lambda_{exc}$  = 396 nm) and excitation ( $\lambda_{em}$  = 592 nm) spectra of (a) 2 and (b) 3. Notes: the red and blue lines represent emission and excitation spectra, respectively.



Fig S8. CIE chromaticity diagram of (a) 2 and (b) 3 polycrystalline phosphors excited by

UV light.



Fig S9. Photoluminescence decay lifetime curves of (a) 2 and (b) 3.



Fig S10. The FQY of (a) 1, (b) 2 and (c) 3.

| Compound                                                                           | 1       | 2        | 3       |
|------------------------------------------------------------------------------------|---------|----------|---------|
| $\Delta H (\mathrm{kJ}\cdot\mathrm{mol}^{-1})$                                     | 8.7989  | 12.0577  | 9.1380  |
| $\Delta S \left( \mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1} \right)$ | 34.8472 | 43.6084  | 28.1517 |
| N                                                                                  | 66.1145 | 189.6493 | 29.5493 |

**Table S1.** The averaged enthalpy changes and corresponding entropy changes in 1–3. Using the Boltzmann equation,  $\Delta S = R \cdot \ln N$ , the *N* value of 1–3 is estimated.

**Table S2.** Comparison of structural phase transition temperatures of rare-earth double perovskite materials.

| Formula <sup>a</sup>                                                                                   | T/K              | Ref                    |
|--------------------------------------------------------------------------------------------------------|------------------|------------------------|
| $(DMP)_2LaRb(NO_3)_6$                                                                                  | 219/209          | 1                      |
| $(HQ)_2RbEu(NO_3)_6$                                                                                   | 254/245          | 2                      |
| [(CH <sub>3</sub> ) <sub>3</sub> NCH <sub>2</sub> Cl] <sub>2</sub> RbEu(NO <sub>3</sub> ) <sub>6</sub> | 259/246          | This work (1)          |
| (HQ) <sub>4</sub> KEu(NO <sub>3</sub> ) <sub>8</sub>                                                   | 263/259, 292/290 | 3                      |
| $(RM3HQ)_2RbPr(NO_3)_6$                                                                                | 280/279          | 4                      |
| (RM3HQ) <sub>2</sub> RbLa(NO <sub>3</sub> ) <sub>6</sub>                                               | 280/269, 425/409 | 5                      |
| [(CH <sub>3</sub> ) <sub>3</sub> NCH <sub>2</sub> Br] <sub>2</sub> RbEu(NO <sub>3</sub> ) <sub>6</sub> | 281/272          | This work (2)          |
| $(RM3HQ)_2RbCe(NO_3)_6$                                                                                | 285/272          | 6                      |
| $(RM3HQ)_2RbEu(NO_3)_6$                                                                                | 285/279          | 7                      |
| $(R3HQ)_4KCe(NO_3)_8$                                                                                  | 323/306          | 8                      |
| [(CH <sub>3</sub> ) <sub>3</sub> NCH <sub>2</sub> I] <sub>2</sub> RbEu(NO <sub>3</sub> ) <sub>6</sub>  | 327/310, 405/377 | This work ( <b>3</b> ) |
| (RM3HQ) <sub>2</sub> KEu(NO <sub>3</sub> ) <sub>6</sub>                                                | 371/363          | 9                      |
| $(R3HQ)_4CsEu(NO_3)_8$                                                                                 | 375/359          | 10                     |
| $(R3HQ)_4CsSm(NO_3)_8$                                                                                 | 379/358          | 10                     |
| (4FHQ) <sub>2</sub> RbEu(NO <sub>3</sub> ) <sub>6</sub>                                                | 432/418          | 2                      |
| (3HQ) <sub>4</sub> RbEu(NO <sub>3</sub> ) <sub>8</sub>                                                 | 442/434          | 11                     |

<sup>a</sup> DMP = N,N-dimethylpyrrolidinium cation; HQ = quinuclidium; RM3HQ = (R)-N-methyl-3-hydroxylquinuclidinium; R3HQ = (R)-3-hydroxylquinuclidinium cation; 4FHQ = 4-fluoro-quinuclidium.

 Table S3. Crystal data and structure refinement details of 1, 2 and 3.

| 1              | 193 K                        | 293 K                            |
|----------------|------------------------------|----------------------------------|
| Formula        | $C_8H_{22}Cl_2EuN_8O_{18}Rb$ | $C_{16}Cl_4Eu_2N_{16}O_{36}Rb_2$ |
| Formula weight | 826.68                       | 1608.94                          |
| T / K          | 192.97(10)                   | 293(2)                           |

| Crystal system                           | monoclinic           | cubic          |
|------------------------------------------|----------------------|----------------|
| Space group                              | <i>I</i> 2/ <i>m</i> | Fm-3m          |
| <i>a</i> / Å                             | 9.9367(13)           | 13.9355(2)     |
| <i>b</i> / Å                             | 9.6137(13)           | 13.9355(2)     |
| <i>c</i> / Å                             | 13.8856(15)          | 13.9355(2)     |
| $\alpha$ / °                             | 90                   | 90             |
| β /°                                     | 95.863(10)           | 90             |
| $\gamma$ /°                              | 90                   | 90             |
| $V/\text{\AA}^3$                         | 1319.5(3)            | 2706.25(12)    |
| Ζ                                        | 2                    | 2              |
| $D_{ m calc}$ / g·cm <sup>-3</sup>       | 2.081                | 1.975          |
| $\mu$ / mm <sup>-1</sup>                 | 4.502                | 4.388          |
| <i>F</i> (000)                           | 808.0                | 1528.0         |
| $\theta$ range / °                       | 4.816-49.98          | 5.062-62.68    |
| Reflns collected                         | 4111                 | 2583           |
| Independent reflns $(R_{int})$           | 1226 (0.0538)        | 256 (0.0124)   |
| no. parameters                           | 131                  | 26             |
| $R_1^{[a]}, wR_2^{[b]} [I > 2\sigma(I)]$ | 0.2346, 0.5006       | 0.0375, 0.1011 |
| $R_1$ , $wR_2$ [all data]                | 0.2428, 0.5148       | 0.0375, 0.1011 |
| GOF                                      | 2.542                | 1.175          |
| $\Delta  ho^{[c]}$ / e·Å <sup>-3</sup>   | 24.41, -3.56         | 1.09, -1.03    |
| CCDC                                     | 2310567              | 2310568        |

| 2                                   | 293 K                            |
|-------------------------------------|----------------------------------|
| Formula                             | $Br_4C_{16}Eu_2N_{16}O_{36}Rb_2$ |
| Formula weight                      | 1786.80                          |
| T/K                                 | 293(2)                           |
| Crystal system                      | cubic                            |
| Space group                         | Fm-3m                            |
| <i>a</i> / Å                        | 13.9993(6)                       |
| <i>b</i> / Å                        | 13.9993(6)                       |
| <i>c</i> / Å                        | 13.9993(6)                       |
| α/°                                 | 90                               |
| β /°                                | 90                               |
| γ /°                                | 90                               |
| V / Å <sup>3</sup>                  | 2743.6(4)                        |
| Ζ                                   | 2                                |
| $D_{\rm calc}$ / g·cm <sup>-3</sup> | 2.163                            |
| $\mu / \text{mm}^{-1}$              | 7.047                            |
| <i>F</i> (000)                      | 1672.0                           |
| $\theta$ range / °                  | 5.04-62.694                      |

| Reflns collected                         | 2703                        |
|------------------------------------------|-----------------------------|
| Independent reflns $(R_{int})$           | 256 (0.0187)                |
| no. parameters                           | 23                          |
| $R_1^{[a]}, wR_2^{[b]} [I > 2\sigma(I)]$ | 0.0434, 0.1303              |
| $R_1$ , $wR_2$ [all data]                | 0.0438, 0.1305              |
| GOF                                      | 1.169                       |
| $\Delta  ho^{[c]}$ / e·Å <sup>-3</sup>   | 0.90, -0.95                 |
| CCDC                                     | 2310569                     |
| 3                                        | 311 K                       |
| Formula                                  | $C_8H_{22}EuI_2N_8O_{18}Rb$ |
| Formula weight                           | 1009.56                     |
| <i>Т /</i> К                             | 311.15                      |
| Crystal system                           | triclinic                   |
| Space group                              | P-1                         |
| a / Å                                    | 9.6573(3)                   |
| <i>b</i> / Å                             | 14.1326(4)                  |
| <i>c</i> / Å                             | 17.3712(5)                  |
| α/°                                      | 112.633(3)                  |
| eta /°                                   | 104.666(3)                  |
| γ /°                                     | 93.116(2)                   |
| V / Å <sup>3</sup>                       | 2086.18(12)                 |
| Ζ                                        | 3                           |
| $D_{ m calc}$ / g·cm <sup>-3</sup>       | 2.411                       |
| $\mu / \mathrm{mm}^{-1}$                 | 6.300                       |
| <i>F</i> (000)                           | 1428.0                      |
| $\theta$ range / °                       | 4.424-49.99                 |
| Reflns collected                         | 17253                       |
| Independent reflns $(R_{int})$           | 7086 (0.0275)               |
| no. parameters                           | 526                         |
| $R_1^{[a]}, wR_2^{[b]} [I > 2\sigma(I)]$ | 0.0497, 0.1402              |
| $R_1, wR_2$ [all data]                   | 0.0578, 0.1470              |
| GOF                                      | 1.019                       |
| $\Delta  ho^{[c]}$ / e·Å <sup>-3</sup>   | 3.99, -2.41                 |
| CCDC                                     | 2314668                     |

<sup>[a]</sup>  $R_1 = \Sigma ||F_o| - |F_c|| \overline{\Sigma |F_o|}$ . <sup>[b]</sup>  $wR_2 = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{1/2}$ . <sup>[c]</sup> Maximum and minimum residual electron density.

| <b>1</b> –193 K                          |             |                                          |             |
|------------------------------------------|-------------|------------------------------------------|-------------|
| Eu1–O6                                   | 2.45 (5)    | Rb1–O3                                   | 2.66 (6)    |
| Eu1–O1                                   | 2.43 (5)    | Rb1-O4                                   | 2.67 (4)    |
| Eu1–O2                                   | 2.43 (5)    | O6 <sup>i</sup> –Eu1–O6 <sup>iii</sup>   | 34 (3)      |
| O6 <sup>iii</sup> –Eu1–O6 <sup>ii</sup>  | 180.00 (19) | O3 <sup>viii</sup> –Rb1–O4 <sup>x</sup>  | 97.1 (11)   |
| O6 <sup>i</sup> –Eu1–O6 <sup>ii</sup>    | 146 (3)     | O3 <sup>ix</sup> –Rb1–O4 <sup>viii</sup> | 97.1 (11)   |
| O6 <sup>i</sup> –Eu1–O6 <sup>iv</sup>    | 179.99 (14) | O3-Rb1-O4                                | 82.9 (11)   |
| O6 <sup>ii</sup> –Eu1–O6 <sup>iv</sup>   | 34 (3)      | O3 <sup>x</sup> –Rb1–O4                  | 97.1 (11)   |
| O6 <sup>iii</sup> –Eu1–O6 <sup>iv</sup>  | 146 (3)     | O3 <sup>ix</sup> –Rb1–O4                 | 97.1 (11)   |
| O1 <sup>vii</sup> –Eu1–O6 <sup>iii</sup> | 139.2 (16)  | O4 <sup>x</sup> -Rb1-O4                  | 180.00 (13) |
| O1–Eu1–O6 <sup>iv</sup>                  | 139.2 (16)  | O4 <sup>x</sup> -Rb1-O4 <sup>viii</sup>  | 180.00 (13) |
| O1 <sup>v</sup> -Eu1-O6 <sup>iii</sup>   | 40.8 (16)   | O1 <sup>v</sup> -Eu1-O6 <sup>iv</sup>    | 110 (2)     |
| O1–Eu1–O6 <sup>i</sup>                   | 40.8 (16)   | O1–Eu1–O6 <sup>ii</sup>                  | 110 (2)     |
| O1–Eu1–O6 <sup>iii</sup>                 | 70 (2)      | O1 <sup>vi</sup> –Eu1–O6 <sup>iii</sup>  | 110 (2)     |
| O1 <sup>vi</sup> –Eu1–O6 <sup>i</sup>    | 139.2 (16)  | O1–Eu1–O1 <sup>vii</sup>                 | 91 (3)      |
| O1 <sup>vi</sup> –Eu1–O6 <sup>iv</sup>   | 40.8 (16)   | O1 <sup>vi</sup> –Eu1–O1 <sup>v</sup>    | 91 (3)      |
| O1 <sup>v</sup> -Eu1-O6 <sup>i</sup>     | 70 (2)      | O1–Eu1–O1 <sup>v</sup>                   | 89 (3)      |
| O1 <sup>vii</sup> –Eu1–O6 <sup>iv</sup>  | 70 (2)      | O1 <sup>vi</sup> –Eu1–O1 <sup>vii</sup>  | 89 (3)      |
| O1 <sup>vii</sup> –Eu1–O6 <sup>ii</sup>  | 40.8 (16)   | O1 <sup>v</sup> -Eu1-O1 <sup>vii</sup>   | 180 (2)     |
| O1 <sup>vii</sup> –Eu1–O6 <sup>i</sup>   | 110 (2)     | O1–Eu1–O1 <sup>vi</sup>                  | 180.0 (18)  |
| O1 <sup>vi</sup> –Eu1–O6 <sup>ii</sup>   | 70 (2)      | O2 <sup>vii</sup> –Eu1–O6 <sup>i</sup>   | 71 (2)      |
| O1 <sup>v</sup> -Eu1-O6 <sup>ii</sup>    | 139.2 (16)  | O2 <sup>vii</sup> –Eu1–O6 <sup>ii</sup>  | 87.8 (16)   |
| $O2^{vi}$ –Eu1–O6 <sup>i</sup>           | 92.2 (16)   | O2–Eu1–O6 <sup>iii</sup>                 | 109 (2)     |
| O2 <sup>v</sup> -Eu1-O6 <sup>iii</sup>   | 87.8 (16)   | O2 <sup>v</sup> -Eu1-O2 <sup>vi</sup>    | 103 (3)     |
| O2 <sup>v</sup> -Eu1-O6 <sup>i</sup>     | 109 (2)     | O2–Eu1–O2 <sup>v</sup>                   | 77 (3)      |
| O2–Eu1–O1 <sup>vi</sup>                  | 132.2 (18)  | O3-Rb1-O3 <sup>viii</sup>                | 90 (2)      |
| O2-Eu1-O1                                | 47.8 (18)   | O3 <sup>x</sup> -Rb1-O3 <sup>viii</sup>  | 90 (2)      |

Table S4. Selected bond lengths [Å] and angles  $[\circ]$  for 1, 2 and 3.

| O3 <sup>viii</sup> –Rb1–O4 | 82.9 (11) | O3-Rb1-O4 <sup>viii</sup> | 82.9 (11) |
|----------------------------|-----------|---------------------------|-----------|
|----------------------------|-----------|---------------------------|-----------|

Symmetry codes: (i) x-1/2, y-1/2, z-1/2; (ii) -x+3/2, y-1/2, -z+5/2; (iii) x-1/2, -y+5/2, z-1/2; (iv) -x+3/2, -y+5/2, -z+5/2; (v) x, -y+2, z; (vi) -x+1, -y+2, -z+2; (vii) -x+1, y, -z+2; (viii) x, -y+3, z; (ix) -x+2, y, -z+2; (x) -x+2, -y+3, -z+2; (xi) x+1/2, y+1/2, z+1/2.

1–293 K

| Rb1–O1                                      | 2.760 (18)  | Eu1–O2                                      | 2.531 (8)   |
|---------------------------------------------|-------------|---------------------------------------------|-------------|
| O1–Rb1–O1 <sup>iii</sup>                    | 90.0        | O2 <sup>xvi</sup> –Eu1–O2 <sup>xix</sup>    | 67.79 (17)  |
| O1 <sup>iv</sup> -Rb1-O1 <sup>i</sup>       | 90.000 (3)  | O2 <sup>xiv</sup> –Eu1–O2 <sup>xxi</sup>    | 80.05 (18)  |
| O1 <sup>iv</sup> -Rb1-O1 <sup>v</sup>       | 90.0        | O2 <sup>xxii</sup> –Eu1–O2 <sup>xix</sup>   | 40.9 (5)    |
| O1-Rb1-O1 <sup>iv</sup>                     | 180.0       | O2 <sup>xvi</sup> –Eu1–O2 <sup>xxi</sup>    | 99.95 (18)  |
| O1-Rb1-O1 <sup>v</sup>                      | 90.000 (1)  | O2–Eu1–O2 <sup>xv</sup>                     | 145.8 (3)   |
| O1 <sup>iii</sup> –Rb1–O1 <sup>iv</sup>     | 90.000 (1)  | O2 <sup>xviii</sup> –Eu1–O2 <sup>xxi</sup>  | 67.79 (17)  |
| O1 <sup>iii</sup> –Rb1–O1 <sup>i</sup>      | 90.000 (3)  | O2 <sup>xx</sup> –Eu1–O2 <sup>xv</sup>      | 99.95 (18)  |
| O1-Rb1-O1 <sup>ii</sup>                     | 90.000 (3)  | O2 <sup>xx</sup> –Eu1–O2 <sup>xxi</sup>     | 112.21 (17) |
| O1 <sup>ii</sup> –Rb1–O1 <sup>i</sup>       | 180.0       | O2 <sup>xvii</sup> –Eu1–O2 <sup>xv</sup>    | 112.21 (17) |
| O1 <sup>iii</sup> –Rb1–O1 <sup>ii</sup>     | 90.000 (1)  | O2–Eu1–O2 <sup>xxii</sup>                   | 67.79 (17)  |
| O1 <sup>iii</sup> –Rb1–O1 <sup>v</sup>      | 180.0       | O2 <sup>xxii</sup> –Eu1–O2 <sup>xvii</sup>  | 34.2 (3)    |
| O1 <sup>iv</sup> -Rb1-O1 <sup>ii</sup>      | 90.0        | O2 <sup>xiv</sup> –Eu1–O2 <sup>xxii</sup>   | 99.95 (18)  |
| O1 <sup>ii</sup> –Rb1–O1 <sup>v</sup>       | 90.000 (2)  | O2–Eu1–O2 <sup>xii</sup>                    | 180.0       |
| O1-Rb1-O1 <sup>i</sup>                      | 90.0        | O2 <sup>xvi</sup> –Eu1–O2 <sup>xxii</sup>   | 80.05 (18)  |
| O1 <sup>i</sup> -Rb1-O1 <sup>v</sup>        | 90.000 (2)  | O2 <sup>xvi</sup> –Eu1–O2 <sup>xii</sup>    | 139.1 (5)   |
| O2 <sup>xx</sup> –Eu1–O2 <sup>xxii</sup>    | 67.79 (17)  | O2 <sup>xviii</sup> –Eu1–O2 <sup>xxii</sup> | 112.21 (17) |
| O2 <sup>xxi</sup> –Eu1–O2 <sup>xxii</sup>   | 180.0       | O2 <sup>xiv</sup> –Eu1–O2 <sup>xix</sup>    | 112.21 (17) |
| O2 <sup>xvii</sup> –Eu1–O2 <sup>xii</sup>   | 99.95 (18)  | O2 <sup>xvi</sup> –Eu1–O2 <sup>xiii</sup>   | 112.21 (17) |
| O2 <sup>xiv</sup> –Eu1–O2 <sup>xiii</sup>   | 67.79 (17)  | O2 <sup>xviii</sup> –Eu1–O2 <sup>xix</sup>  | 99.95 (18)  |
| O2 <sup>xviii</sup> –Eu1–O2 <sup>xiii</sup> | 40.9 (5)    | O2 <sup>xxi</sup> –Eu1–O2 <sup>xix</sup>    | 139.1 (5)   |
| O2 <sup>xx</sup> –Eu1–O2 <sup>xiii</sup>    | 139.1 (5)   | O2 <sup>xii</sup> –Eu1–O2 <sup>xix</sup>    | 145.8 (3)   |
| O2 <sup>xiii</sup> –Eu1–O2 <sup>xix</sup>   | 112.21 (17) | O2 <sup>xiv</sup> -Eu1-O2 <sup>xv</sup>     | 67.79 (17)  |

| O2 <sup>xxi</sup> –Eu1–O2 <sup>xiii</sup>  | 34.2 (3)    | O2 <sup>xxi</sup> –Eu1–O2 <sup>xv</sup>     | 40.9 (5)    |
|--------------------------------------------|-------------|---------------------------------------------|-------------|
| O2–Eu1–O2 <sup>xvii</sup>                  | 80.05 (18)  | O2 <sup>xiii</sup> –Eu1–O2 <sup>xv</sup>    | 67.79 (17)  |
| O2 <sup>xviii</sup> –Eu1–O2 <sup>xv</sup>  | 80.05 (18)  | O2 <sup>xviii</sup> –Eu1–O2 <sup>xvii</sup> | 139.1 (5)   |
| O2 <sup>xiv</sup> –Eu1–O2 <sup>xvii</sup>  | 112.21 (17) | O2 <sup>xii</sup> –Eu1–O2 <sup>xv</sup>     | 34.2 (3)    |
| O2–Eu1–O2 <sup>xiv</sup>                   | 139.1 (5)   | O2–Eu1–O2 <sup>xiii</sup>                   | 99.95 (18)  |
| O2 <sup>xix</sup> –Eu1–O2 <sup>xv</sup>    | 180.0       | O2 <sup>xx</sup> –Eu1–O2 <sup>xix</sup>     | 80.05 (18)  |
| O2 <sup>xx</sup> –Eu1–O2 <sup>xvii</sup>   | 40.9 (5)    | O2–Eu1–O2 <sup>xix</sup>                    | 34.2 (3)    |
| O2 <sup>xxi</sup> –Eu1–O2 <sup>xvii</sup>  | 145.8 (3)   | O2 <sup>xvi</sup> –Eu1–O2 <sup>xviii</sup>  | 145.8 (3)   |
| O2-Eu1-O2 <sup>xvi</sup>                   | 40.9 (5)    | O2–Eu1–O2 <sup>xx</sup>                     | 67.79 (17)  |
| O2 <sup>xxi</sup> –Eu1–O2 <sup>xii</sup>   | 67.79 (17)  | O2 <sup>xxii</sup> –Eu1–O2 <sup>xv</sup>    | 139.1 (5)   |
| O2 <sup>xiv</sup> –Eu1–O2 <sup>xvi</sup>   | 180.0       | O2 <sup>xviii</sup> –Eu1–O2 <sup>xx</sup>   | 180.0       |
| O2 <sup>xvi</sup> –Eu1–O2 <sup>xv</sup>    | 112.21 (17) | O2 <sup>xiii</sup> –Eu1–O2 <sup>xii</sup>   | 80.05 (18)  |
| O2-Eu1-O2 <sup>xviii</sup>                 | 112.21 (17) | O2–Eu1–O2 <sup>xxi</sup>                    | 112.21 (17) |
| O2 <sup>xiv</sup> -Eu1-O2 <sup>xii</sup>   | 40.9 (5)    | O2 <sup>xviii</sup> –Eu1–O2 <sup>xii</sup>  | 67.79 (17)  |
| O2 <sup>xiv</sup> –Eu1–O2 <sup>xx</sup>    | 145.8 (3)   | O2 <sup>xvi</sup> –Eu1–O2 <sup>xx</sup>     | 34.2 (3)    |
| O2 <sup>xiii</sup> –Eu1–O2 <sup>xvii</sup> | 180.0       |                                             |             |

Symmetry codes: (i) -z+1, -x+1, -y+1; (ii) z, x, y; (iii) -y+1, -z+1, -x+1; (iv) -x+1, -y+1, -z+1; (v) y, z, x; (vi) y+1/2, z, -x+3/2; (vii) -x+3/2, y+1/2, z; (viii) -z+1, x-1/2, -y+1/2; (ix) -y+1/2, -z+1, x-1/2; (x) z, -x+3/2, y+1/2; (xi) x-1/2, -y+1/2, -z+1; (xii) -x+1, -y+1, -z+2; (xiii) -z+3/2, -y+1, x+1/2; (xiv) x, -z+3/2, -y+3/2; (xv) -y+1, -x+1, -z+2; (xvi) -x+1, z-1/2, y+1/2; (xvii) z-1/2, y, -x+3/2; (xviii) -y+1, -z+3/2, -x+3/2; (xix) y, x, z; (xx) y, z, -z+3/2; (xxiv) -x+3/2, -x+1/2; (xxii) z-1/2, x, y+1/2; (xxiii) x, -y+1/2, -z+3/2; (xxiv) -x+3/2, y, -z+3/2; (xxiv) -x+3/2, -y+1/2, z; (xxiv) -y+1, -x+1, z; (xxvii) -z+3/2, -x+1, y+1/2; (xxviii) -y+1, z-1/2, -x+3/2; (xxix) -x+1, -y+1, z; (xxx) x+1/2, y-1/2, z.

| Eu1–O2                                   | 2.556 (10) | Rb1–O1                                   | 2.824 (16) |
|------------------------------------------|------------|------------------------------------------|------------|
| $O2^{i}$ –Eu1– $O2^{iv}$                 | 180.0      | O2 <sup>i</sup> –Eu1–O2 <sup>viii</sup>  | 34.3 (4)   |
| O2 <sup>ix</sup> -Eu1-O2 <sup>v</sup>    | 90.000 (2) | O2 <sup>i</sup> –Eu1–O2 <sup>ii</sup>    | 40.8 (6)   |
| O2 <sup>viii</sup> –Eu1–O2 <sup>ix</sup> | 112.2 (2)  | O2 <sup>iv</sup> -Eu1-O2 <sup>viii</sup> | 145.7 (4)  |

| O2 <sup>i</sup> -Eu1-O2 <sup>vi</sup>     | 67.8 (2)  | O2 <sup>xii</sup> –Eu1–O2 <sup>ii</sup>   | 34.3 (4)   |
|-------------------------------------------|-----------|-------------------------------------------|------------|
| O2 <sup>x</sup> –Eu1–O2 <sup>ii</sup>     | 100.0 (2) | O2 <sup>vi</sup> –Eu1–O2 <sup>viii</sup>  | 40.8 (6)   |
| O2 <sup>iv</sup> -Eu1-O2 <sup>vi</sup>    | 112.2 (2) | O2 <sup>vii</sup> –Eu1–O2 <sup>ix</sup>   | 112.2 (2)  |
| O2 <sup>iv</sup> -Eu1-O2 <sup>v</sup>     | 49.2 (6)  | O2 <sup>i</sup> –Eu1–O2 <sup>x</sup>      | 112.2 (2)  |
| O2 <sup>iii</sup> –Eu1–O2 <sup>v</sup>    | 100.0 (2) | O2 <sup>i</sup> –Eu1–O2 <sup>xi</sup>     | 112.2 (2)  |
| O2 <sup>iv</sup> –Eu1–O2 <sup>x</sup>     | 67.8 (2)  | $O2^{iv}$ –Eu1–O2 <sup>ix</sup>           | 40.8 (6)   |
| O2 <sup>iii</sup> –Eu1–O2 <sup>xii</sup>  | 139.2 (6) | $O2^{iv}$ –Eu1–O2 <sup>xi</sup>           | 67.8 (2)   |
| O2 <sup>vi</sup> –Eu1–O2 <sup>x</sup>     | 180.0     | O2 <sup>xi</sup> –Eu1–O2 <sup>ix</sup>    | 34.3 (4)   |
| O2 <sup>vi</sup> –Eu1–O2 <sup>ii</sup>    | 80.0 (2)  | O2 <sup>vi</sup> –Eu1–O2 <sup>xi</sup>    | 112.2 (2)  |
| O2 <sup>viii</sup> –Eu1–O2 <sup>x</sup>   | 139.2 (6) | O2 <sup>ii</sup> –Eu1–O2 <sup>ix</sup>    | 180.0      |
| O2 <sup>iii</sup> –Eu1–O2 <sup>ii</sup>   | 112.2 (2) | O2 <sup>viii</sup> –Eu1–O2 <sup>xi</sup>  | 100.0 (2)  |
| O2 <sup>x</sup> –Eu1–O2 <sup>v</sup>      | 67.8 (2)  | $O2^{iv}$ –Eu1–O2 <sup>ii</sup>           | 139.2 (6)  |
| O2 <sup>x</sup> –Eu1–O2 <sup>xi</sup>     | 67.8 (2)  | O2 <sup>viii</sup> –Eu1–O2 <sup>iii</sup> | 112.2 (2)  |
| O2 <sup>xii</sup> –Eu1–O2 <sup>v</sup>    | 67.8 (2)  | O2 <sup>viii</sup> –Eu1–O2 <sup>ii</sup>  | 67.8 (2)   |
| O2 <sup>i</sup> –Eu1–O2 <sup>iii</sup>    | 100.0 (2) | O2 <sup>x</sup> –Eu1–O2 <sup>iii</sup>    | 34.3 (4)   |
| O2 <sup>xi</sup> –Eu1–O2 <sup>xii</sup>   | 180.0     | O2 <sup>xi</sup> –Eu1–O2 <sup>ii</sup>    | 145.7 (4)  |
| O2 <sup>iv</sup> -Eu1-O2 <sup>iii</sup>   | 80.0 (2)  | O2 <sup>xi</sup> –Eu1–O2 <sup>iii</sup>   | 40.8 (6)   |
| O2 <sup>vii</sup> –Eu1–O2 <sup>xii</sup>  | 40.8 (6)  | O2 <sup>vii</sup> –Eu1–O2 <sup>ii</sup>   | 67.8 (2)   |
| O2 <sup>vi</sup> –Eu1–O2 <sup>iii</sup>   | 145.7 (4) | O2 <sup>i</sup> –Eu1–O2 <sup>vii</sup>    | 80.0 (2)   |
| O2 <sup>i</sup> -Eu1-O2 <sup>ix</sup>     | 139.2 (6) | O2 <sup>xii</sup> –Eu1–O2 <sup>ix</sup>   | 145.7 (4)  |
| O2 <sup>iv</sup> -Eu1-O2 <sup>vii</sup>   | 100.0 (2) | O2 <sup>xi</sup> –Eu1–O2 <sup>vii</sup>   | 139.2 (6)  |
| O2vi-Eu1-O2ix                             | 100.0 (2) | O2 <sup>i</sup> –Eu1–O2 <sup>v</sup>      | 130.8 (6)  |
| O2 <sup>vi</sup> -Eu1-O2 <sup>vii</sup>   | 34.3 (4)  | O2 <sup>iii</sup> –Eu1–O2 <sup>vii</sup>  | 180.0      |
| O2 <sup>x</sup> –Eu1–O2 <sup>ix</sup>     | 80.0 (2)  | O2 <sup>viii</sup> –Eu1–O2 <sup>v</sup>   | 145.7 (4)  |
| O2 <sup>viii</sup> –Eu1–O2 <sup>vii</sup> | 67.8 (2)  | O2 <sup>i</sup> –Eu1–O2 <sup>xii</sup>    | 67.8 (2)   |
| O2 <sup>iii</sup> –Eu1–O2 <sup>ix</sup>   | 67.8 (2)  | O2 <sup>xi</sup> –Eu1–O2 <sup>v</sup>     | 112.2 (2)  |
| O2 <sup>x</sup> -Eu1-O2 <sup>vii</sup>    | 145.7 (4) | O2 <sup>iv</sup> -Eu1-O2 <sup>xii</sup>   | 112.2 (2)  |
| O2 <sup>vii</sup> –Eu1–O2 <sup>v</sup>    | 80.0 (2)  | O1-Rb1-O1 <sup>xv</sup>                   | 90.000 (1) |

| O2vi-Eu1-O2xii                           | 67.8 (2)   | O1xvi-Rb1-O1xvii                           | 90.000 (1) |
|------------------------------------------|------------|--------------------------------------------|------------|
| O2 <sup>ii</sup> –Eu1–O2 <sup>v</sup>    | 90.000 (2) | O1xvi-Rb1-O1xiii                           | 90.000 (1) |
| O2viii–Eu1–O2xii                         | 80.0 (2)   | O1-Rb1-O1 <sup>xvi</sup>                   | 90.000 (3) |
| O2 <sup>x</sup> –Eu1–O2 <sup>xii</sup>   | 112.2 (2)  | O1–Rb1–O1 <sup>xiii</sup>                  | 90.000 (1) |
| O2 <sup>vi</sup> -Eu1-O2 <sup>v</sup>    | 112.2 (2)  | O1 <sup>xv</sup> –Rb1–O1 <sup>xvi</sup>    | 180.0      |
| O1 <sup>xv</sup> -Rb1-O1 <sup>xvii</sup> | 90.000 (1) | O1xiv-Rb1-O1xiii                           | 90.000 (1) |
| O1-Rb1-O1 <sup>xiv</sup>                 | 180.0      | O1-Rb1-O1 <sup>xvii</sup>                  | 90.0       |
| O1xiv-Rb1-O1xvii                         | 90.000 (1) | O1 <sup>xvii</sup> –Rb1–O1 <sup>xiii</sup> | 180.0      |
| O1 <sup>xv</sup> -Rb1-O1 <sup>xiv</sup>  | 90.000 (2) | O1 <sup>xvi</sup> –Rb1–O1 <sup>xiv</sup>   | 90.000 (1) |
| O1 <sup>xv</sup> -Rb1-O1 <sup>xiii</sup> | 90.000 (1) |                                            |            |

Symmetry codes: (i) -z+1, -y+2, x; (ii) -y+3/2, -z+3/2, -x+1; (iii) z, x+1/2, y-1/2; (iv) z, y, -x+1; (v) -z+1, y, -x+1; (vi) x, -z+3/2, -y+3/2; (vii) -z+1, -x+3/2, -y+3/2; (viii) -x+1, -y+2, -z+1; (ix) y-1/2, z+1/2, x; (x) -x+1, z+1/2, y-1/2; (xi) y-1/2, x+1/2, z; (xii) -y+3/2, -x+3/2, -z+1; (xiii) -z+1, -x+1, -y+1; (xiv) -x+1, -y+1, -z+1; (xv) -y+1, -z+1, -x+1; (xvi) y, z, x; (xvii) z, x, y; (xviii) x, -y+1, z; (xix) -x+1, -y+1, z; (xx) -x+1, y, -z+1; (xxi) -x+1, y, -z+1; (xxi) -x+1/2, -y+3/2, z; (xxiv) -x+1/2, y, -z+1/2; (xxv) x, -y+3/2, -z+1/2.

**3**–311 K

| <b>J</b> -311 K |           |                                            |           |
|-----------------|-----------|--------------------------------------------|-----------|
| Eu1–O2          | 2.580 (7) | Eu2–O20                                    | 2.561 (6) |
| Eu1–O3          | 2.568 (7) | Eu2–O21                                    | 2.598 (7) |
| Eu1–O5          | 2.601 (7) | Eu2–O23                                    | 2.585 (6) |
| Eu1–O6          | 2.581 (6) | Eu2–O24                                    | 2.603 (7) |
| Eu1–O7          | 2.608 (7) | Eu2–O26                                    | 2.576 (6) |
| Eu1–O8          | 2.565 (6) | Eu2–O27                                    | 2.575 (6) |
| Rb1–O1          | 2.894 (7) | Rb2-O13                                    | 2.855 (7) |
| Rb2-O19         | 2.906 (7) | O25 <sup>ix</sup> -Rb2-O16 <sup>viii</sup> | 80.9 (3)  |
| O2-Eu1-O5       | 67.6 (2)  | O25 <sup>ix</sup> -Rb2-O19                 | 83.9 (3)  |
| O3–Eu1–O2       | 49.4 (2)  | O19-Rb2-O4vi                               | 113.0 (2) |
| O5-Eu1-O7       | 66.9 (2)  | O19-Rb2-O9 <sup>vii</sup>                  | 108.6 (2) |
| O6–Eu1–O5       | 48.7 (2)  | O25 <sup>ix</sup> -Rb2-O4 <sup>vi</sup>    | 154.2 (2) |

| 08–Eu1–O5                 | 68.3 (2)    | O25 <sup>ix</sup> –Rb2–O9 <sup>vii</sup>  | 115.8 (3) |
|---------------------------|-------------|-------------------------------------------|-----------|
| O11–Eu1–O3                | 67.6 (2)    | O1 <sup>ii</sup> –Rb1–O1                  | 180.0     |
| O12–Eu1–O2                | 111.5 (2)   | O1-Rb1-O22 <sup>v</sup>                   | 68.1 (2)  |
| O14–Eu1–O5                | 110.8 (2)   | O1-Rb1-O22 <sup>i</sup>                   | 111.9 (2) |
| O15-Eu1-O2                | 112.6 (2)   | O1 <sup>ii</sup> –Rb1–O22 <sup>v</sup>    | 111.9 (2) |
| O15-Eu1-O6                | 68.2 (2)    | O1 <sup>ii</sup> –Rb1–O22 <sup>i</sup>    | 68.1 (2)  |
| O15-Eu1-O7                | 178.9 (2)   | O10 <sup>iii</sup> –Rb1–O1                | 84.9 (3)  |
| O17–Eu1–O5                | 67.4 (2)    | O10 <sup>iv</sup> -Rb1-O1                 | 95.1 (3)  |
| O17–Eu1–O7                | 110.5 (2)   | O10 <sup>iv</sup> -Rb1-O1 <sup>ii</sup>   | 84.9 (3)  |
| O18-Eu1-O2                | 179.5 (2)   | O10 <sup>iii</sup> –Rb1–O1 <sup>ii</sup>  | 95.1 (3)  |
| O18-Eu1-O3                | 130.8 (2)   | O10 <sup>iv</sup> -Rb1-O10 <sup>iii</sup> | 180.0 (5) |
| O18–Eu1–O5                | 112.4 (2)   | O10 <sup>iii</sup> –Rb1–O22 <sup>v</sup>  | 76.5 (3)  |
| O18-Eu1-O6                | 111.6 (2)   | O10 <sup>iii</sup> -Rb1-O22 <sup>i</sup>  | 103.5 (3) |
| O20 <sup>i</sup> –Eu2–O20 | 180.0       | O10 <sup>iv</sup> -Rb1-O22 <sup>v</sup>   | 103.5 (3) |
| O20-Eu2-O21               | 49.2 (2)    | O10 <sup>iv</sup> -Rb1-O22 <sup>i</sup>   | 76.5 (3)  |
| O21-Eu2-O21 <sup>i</sup>  | 180.0       | $O22^{i}$ -Rb1-O22 <sup>v</sup>           | 180.0 (3) |
| O21-Eu2-O24               | 68.0 (2)    | O4vi-Rb2-O9vii                            | 78.5 (2)  |
| O23-Eu2-O21               | 113.6 (2)   | O13-Rb2-O4 <sup>vi</sup>                  | 89.7 (3)  |
| O23 <sup>i</sup> -Eu2-O21 | 66.4 (2)    | O13-Rb2-O9 <sup>vii</sup>                 | 167.7 (2) |
| O24–Eu2–O24 <sup>i</sup>  | 180.00 (17) | O13-Rb2-O16viii                           | 86.8 (3)  |
| O26-Eu2-O21 <sup>i</sup>  | 112.4 (2)   | O13-Rb2-O19                               | 79.2 (3)  |
| O26-Eu2-O23               | 70.8 (2)    | O13-Rb2-O25 <sup>ix</sup>                 | 73.8 (3)  |
| O26-Eu2-O21               | 67.6 (2)    | O16 <sup>viii</sup> –Rb2–O4 <sup>vi</sup> | 78.4 (3)  |
| O26-Eu2-O24               | 67.2 (2)    | O27–Eu2–O23                               | 113.9 (2) |
| O26–Eu2–O26 <sup>i</sup>  | 180.0 (4)   | O27–Eu2–O24                               | 113.2 (2) |
| O27–Eu2–O21               | 70.4 (2)    | O27–Eu2–O26                               | 49.4 (2)  |
| O27-Eu2-O27 <sup>i</sup>  | 180.0       |                                           |           |

Symmetry codes: (i) -x, -y+1, -z; (ii) -x, -y, -z; (iii) x-1, y, z; (iv) -x+1, -y, -z; (v) x, y-1, z; (vi) -x+1, -y+1, -z+1; (vii) x, y+1, z; (viii) -x+2, -y+1, -z+1; (ix) -x+1, -y+1, -z; (x) x+1, y, z.

|                 | U <sub>11</sub> | U <sub>22</sub> | U <sub>33</sub> | U <sub>12</sub> | U <sub>13</sub> | U <sub>23</sub> |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| <b>1</b> –193 K |                 |                 |                 |                 | -               |                 |
| N1              | 0.151 (6)       | 0.151 (6)       | 0.151 (6)       | -0.0001 (7)     | 0.0154 (9)      | 0.0000 (7)      |
| O3              | 0.151 (6)       | 0.151 (6)       | 0.151 (6)       | -0.0001 (8)     | 0.0153 (10)     | 0.0000 (8)      |
| N3              | 0.131 (7)       | 0.131 (7)       | 0.131 (7)       | 0.0000 (8)      | 0.0134 (11)     | 0.0000 (8)      |
| N2              | 0.065 (5)       | 0.065 (5)       | 0.065 (5)       | 0.000           | 0.0067 (9)      | 0.000           |
| O5              | 0.065 (5)       | 0.065 (5)       | 0.065 (5)       | 0.0000 (7)      | 0.0067 (10)     | 0.0000 (7)      |
| O4              | 0.066 (5)       | 0.066 (5)       | 0.065 (5)       | 0.000           | 0.0067 (10)     | 0.000           |
| O6              | 0.065 (5)       | 0.065 (5)       | 0.065 (5)       | 0.0000 (7)      | 0.0067 (10)     | 0.0000 (7)      |
| O1              | 0.151 (6)       | 0.151 (6)       | 0.151 (6)       | -0.0001 (7)     | 0.0154 (10)     | 0.0000 (7)      |
| O2              | 0.151 (6)       | 0.151 (6)       | 0.151 (6)       | -0.0001 (7)     | 0.0154 (10)     | 0.0000 (7)      |
|                 |                 |                 |                 |                 |                 |                 |
| 1–293 K         |                 |                 |                 |                 |                 |                 |
| 01              | 0.104 (6)       | 0.083 (5)       | 0.048 (3)       | 0.000           | 0.000           | -0.020(3)       |
| O2              | 0.177 (8)       | 0.177 (8)       | 0.073 (6)       | 0.000           | 0.000           | 0.000           |
| N1              | 0.088 (4)       | 0.088 (4)       | 0.056 (5)       | 0.000           | 0.000           | 0.000           |
|                 |                 |                 |                 |                 |                 |                 |
| <b>2</b> –293 K |                 |                 |                 |                 |                 |                 |
| O1              | 0.31 (2)        | 0.033 (7)       | 0.31 (2)        | 0.000           | 0.000           | 0.000           |
| O2              | 0.130 (9)       | 0.062 (6)       | 0.095 (8)       | 0.000           | 0.000           | -0.027 (5)      |
| N1              | 0.128 (9)       | 0.038 (7)       | 0.128 (9)       | 0.000           | 0.000           | 0.000           |
|                 |                 |                 |                 |                 |                 |                 |
| <b>3-</b> 311 K |                 |                 |                 |                 |                 |                 |
| 01              | 0.044 (4)       | 0.064 (5)       | 0.061 (5)       | -0.003 (4)      | -0.017 (4)      | 0.013 (4)       |
| O2              | 0.042 (4)       | 0.052 (4)       | 0.049 (4)       | 0.006 (3)       | 0.011 (3)       | 0.016 (3)       |
| O3              | 0.045 (4)       | 0.056 (4)       | 0.043 (4)       | 0.005 (3)       | 0.009 (3)       | 0.019 (3)       |
| O4              | 0.066 (5)       | 0.070 (5)       | 0.054 (4)       | 0.029 (4)       | 0.042 (4)       | 0.022 (4)       |
| 05              | 0.049 (4)       | 0.049 (4)       | 0.042 (4)       | 0.015 (3)       | 0.018 (3)       | 0.020 (3)       |
| O6              | 0.049 (4)       | 0.045 (4)       | 0.048 (4)       | 0.011 (3)       | 0.021 (3)       | 0.018 (3)       |
| 07              | 0.042 (4)       | 0.041 (4)       | 0.054 (4)       | 0.006 (3)       | 0.011 (3)       | 0.022 (3)       |
| 08              | 0.046 (4)       | 0.040 (4)       | 0.047 (4)       | 0.006 (3)       | 0.007 (3)       | 0.021 (3)       |
| 09              | 0.084 (6)       | 0.039 (4)       | 0.075 (5)       | 0.006 (4)       | 0.014 (4)       | 0.037 (4)       |
| O10             | 0.107 (7)       | 0.082 (6)       | 0.087 (6)       | 0.039 (6)       | 0.079 (6)       | 0.038 (5)       |
| 011             | 0.054 (4)       | 0.044 (4)       | 0.050 (4)       | 0.012 (3)       | 0.023 (3)       | 0.021 (3)       |
| 012             | 0.058 (4)       | 0.046 (4)       | 0.055 (4)       | 0.018 (3)       | 0.029 (3)       | 0.022 (3)       |
| O13             | 0.097 (7)       | 0.041 (4)       | 0.110 (7)       | 0.018 (4)       | 0.026 (6)       | 0.053 (5)       |

**Table S5.** Anisotropic displacement parameters  $(Å^2 \times 10^3)$  for **1**, **2** and **3**.

| O14 | 0.050 (4) | 0.058 (4) | 0.056 (4) | 0.013 (4)  | 0.010 (3)  | 0.034 (4) |
|-----|-----------|-----------|-----------|------------|------------|-----------|
| O15 | 0.050 (4) | 0.045 (4) | 0.056 (4) | 0.007 (3)  | 0.010 (3)  | 0.025 (3) |
| O16 | 0.041 (4) | 0.097 (7) | 0.058 (5) | -0.004 (4) | -0.013 (4) | 0.028 (5) |
| O17 | 0.040 (4) | 0.060 (4) | 0.039 (4) | 0.002 (3)  | 0.010 (3)  | 0.015 (3) |
| O18 | 0.042 (4) | 0.048 (4) | 0.047 (4) | 0.011 (3)  | 0.013 (3)  | 0.022 (3) |
| O19 | 0.038 (4) | 0.073 (5) | 0.063 (5) | 0.012 (4)  | -0.015 (4) | 0.006 (4) |
| O20 | 0.044 (4) | 0.040 (4) | 0.034 (3) | 0.012 (3)  | 0.010 (3)  | 0.007 (3) |
| O22 | 0.114 (7) | 0.028 (4) | 0.058 (5) | 0.002 (4)  | 0.022 (5)  | 0.016 (3) |
| O23 | 0.051 (4) | 0.037 (3) | 0.033 (3) | 0.009 (3)  | 0.010 (3)  | 0.012 (3) |
| O24 | 0.054 (4) | 0.040 (4) | 0.048 (4) | 0.002 (3)  | 0.007 (3)  | 0.017 (3) |
| O25 | 0.093 (7) | 0.120 (8) | 0.064 (5) | 0.059 (6)  | 0.057 (5)  | 0.056 (5) |
| O26 | 0.056 (4) | 0.050 (4) | 0.054 (4) | 0.018 (3)  | 0.030 (3)  | 0.028 (3) |
| O27 | 0.042 (4) | 0.049 (4) | 0.047 (4) | 0.020 (3)  | 0.018 (3)  | 0.022 (3) |
| N1  | 0.056 (4) | 0.048 (4) | 0.045 (4) | 0.013 (4)  | 0.015 (3)  | 0.022 (3) |
| N2  | 0.058 (5) | 0.073 (5) | 0.050 (4) | 0.022 (4)  | 0.015 (4)  | 0.040 (4) |
| N3  | 0.042 (4) | 0.043 (4) | 0.044 (4) | 0.016 (3)  | 0.017 (3)  | 0.019 (3) |
| N4  | 0.033 (4) | 0.031 (4) | 0.034 (4) | -0.001 (3) | -0.003 (3) | 0.009 (3) |
| N5  | 0.036 (4) | 0.043 (4) | 0.028 (4) | 0.010 (3)  | 0.010 (3)  | 0.012 (3) |
| N6  | 0.040 (4) | 0.033 (4) | 0.046 (4) | 0.008 (3)  | 0.020 (4)  | 0.022 (3) |
| N7  | 0.043 (4) | 0.047 (5) | 0.042 (4) | 0.007 (4)  | 0.024 (4)  | 0.018 (4) |
| N8  | 0.047 (5) | 0.031 (4) | 0.052 (5) | 0.005 (4)  | 0.019 (4)  | 0.019 (4) |
| N9  | 0.031 (4) | 0.037 (4) | 0.033 (4) | 0.001 (3)  | -0.001 (3) | 0.016 (3) |
| N10 | 0.040 (5) | 0.029 (4) | 0.039 (4) | 0.004 (3)  | -0.003 (4) | 0.002 (3) |
| N11 | 0.058 (5) | 0.028 (4) | 0.038 (4) | 0.008 (4)  | 0.020 (4)  | 0.013 (3) |
| N12 | 0.034 (4) | 0.071 (6) | 0.035 (4) | 0.021 (4)  | 0.015 (3)  | 0.028 (4) |

ΔS

$$= \int_{T_1}^{T_2} \frac{Q}{T} dT \approx \frac{\Delta H}{T} = \frac{10.6437 \, J \cdot g^{-1} \times 826.68 \, g \cdot mol^{-1}}{252.5 \, K} = \frac{8798.93 \, J \cdot mol^{-1}}{252.5 \, K} \approx K^{-1}$$

 $\Delta S = R \ln N$ 

$$N = \exp\left(\frac{\Delta S}{R}\right) = \exp\left(\frac{34.8472 \, J \cdot mol^{-1} \cdot K^{-1}}{8.314 \, J \cdot mol^{-1} \cdot K^{-1}}\right) = 66.1145$$

$$= \int_{T_1}^{T_2} \frac{Q}{T} dT \approx \frac{\Delta H}{T} = \frac{13.4963 \, J \cdot g^{-1} \times 893.41 \, g \cdot mol^{-1}}{276.5 \, K} = \frac{12057.73 \, J \cdot mol^{-1}}{276.5 \, K}$$
$$\cdot K^{-1}$$

 $\Delta S = R \ln N$ 

$$N = \exp\left(\frac{\Delta S}{R}\right) = \exp\left(\frac{43.6084 \, J \cdot mol^{-1} \cdot K^{-1}}{8.314 \, J \cdot mol^{-1} \cdot K^{-1}}\right) = 189.6493$$

ΔS

ΔS

$$= \int_{T_1}^{T_2} \frac{Q}{T} dT \approx \frac{\Delta H}{T} = \frac{9.0515 \, J \cdot g^{-1} \times 1009.56 \, g \cdot mol^{-1}}{324.6 \, K} = \frac{9138.03 \, J \cdot mol^{-1}}{324.6 \, K} \approx K^{-1}$$

 $\Delta S = R \ln N$ 

$$N = \exp\left(\frac{\Delta S}{R}\right) = \exp\left(\frac{28.1517 \, J \cdot mol^{-1} \cdot K^{-1}}{8.314 \, J \cdot mol^{-1} \cdot K^{-1}}\right) = 29.5493$$

## References

1. J. J. Ma, Q. Xu, L. Ye, Q. W. Wang, Z. X. Gong, C. Shi, H. Y. Zhang and Y. Zhang, Structural phase transition and dielectric switching in an organic-inorganic hybrid rareearth double perovskite-type compound:  $(DMP)_2LaRb(NO_3)_6$  (DMP = N,Ndimethylpyrrolidinium cation), *J. Rare Earths.*, 2022, **40**, 937–941.

2. Q. Xu, L. Ye, R. M. Liao, Z. An, C. F. Wang, L. P. Miao and Y. Zhang, H/F Substitution induced large increase of  $T_c$  in a 3D hybrid rare-earth double perovskite multifunctional compound, *Chem. Eur. J.*, 2022, **28**, e202103913.

3. D. F. Li, F. Guo, X. L. He, Y. Z. Wu, X. H. Deng, K. P. Yang, and Y. X. Li, A layered hybrid rare-earth double perovskite with two continuous reversible phase transitions induced by unusual two driving gears of fan-like rotation movements, *CrystEngComm*, 2022, **24**, 8496–8502.

4. Q. Q. Jia, H. F. Lu, J. Q. Luo, Y. Y. Zhang, H. F. Ni, F. W. Zhang and Y. Zhang, Organic-inorganic rare-rarth double perovskite ferroelectric with large piezoelectric response and ferroelasticity for flexible composite energy harvesters, *Small.*, 2024, **20**, 2306989.

5. C. Shi, J. J. Ma, J. Y. Jiang, M. M. Hua, Q. Xu, H. Yu, Y. Zhang and H. Y. Ye, Large piezoelectric response in hybrid rare-earth double perovskite relaxor ferroelectrics, *J. Am. Chem. Soc.*, 2020, **142**, 9634–9641.

6. Z. B. Hu, C. F. Wang, T. T. Sha, C. Shi, L. Ye, H. Y. Ye, Y. Song, Y. M. You and Y.

Zhang, An effective strategy of introducing chirality to achieve multifunctionality in rareearth double perovskite ferroelectrics, *Small Methods*, 2022, **6**, 2200421.

7. C. F. Wang, C. Shi, A. Y. Zheng, Y. L. Wu, L. Ye, N. Wang, H. Y. Ye, M. J. Ju, P. F. Duan, J. L. Wang and Y. Zhang, Achieving circularly polarized luminescence and large piezoelectric response in hybrid rare-earth double perovskite by a chirality induction strategy, *Mater. Horiz.*, 2022, **9**, 2450–2459.

8. C. Shi, L. Ye, Z. X. Gong, J. J. Ma, Q. W. Wang, J. Y. Jiang, M. M. Hua, C. F. Wang, H. Yu, Y. Zhang and H. Y. Ye, Two-dimensional organic-inorganic hybrid rare-earth double perovskite ferroelectrics, *J. Am. Chem. Soc.*, 2020, **142**, 545–551.

9. Q. H. Zou, Z. J. Wang, L. K. Wu, Y. Feng, L. L. Jiang, J. R. Li and C. Shi, Three-Dimensional bimetallic ammonium K-Eu nitrate with a rare (6,6)-connected ion topology exhibiting structural phase transition and photoluminescence properties. *Inorg. Chem.*, 2024, doi: 10.1021/acs.inorgchem.4c01520.

10. Z. J. Wang, L. H. Li, Y. Feng, Q. W. Wang, L. K. Wu, J. R. Li and H. Y. Ye, Synthesis, dielectric, magnetic, and photoluminescence properties of two new hybrid rare-earth double perovskites, *Front. Chem.*, 2022, **10**, 969156.

11. M. M. Hua, L. Ye, Q. W. Wang, J. J. Ma, Z. X. Gong, Q. Xu, C. Shi and Y. Zhang, A layered hybrid rare-earth double-perovskite-type molecule-based compound with electrical and optical response properties, *J. Mater. Chem. C.*, 2020, **8**, 16349–16353.