Supporting Information

Photo-gain optimization in multilayer organic phototransistors by study of spacecharge limited current

Giulia Baroni¹, Francesco Reginato¹, Mario Prosa¹, Marco Brucale¹, Federico Prescimone¹, Mirko Seri, Katherine Gallegos-Rosas² Caterina Soldano², Margherita Bolognesi^{1, *}, Stefano Toffanin^{1, *}

¹Consiglio Nazionale delle Ricerche (CNR) Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), 40129 Bologna (Italy)

² Department of Electronics and Nanoengineering, Aalto University, 00250 Espoo (Finland)

Figure S1. Cross-linked DPP-DTT:C6Si characterization: (a-b) The absorption spectra of the two different HTL after $CHCl_3$ washing (c-d) Transfer characteristics of transistors with different HTL ($V_{DS} = -30$ V), including, (c) cross-linked DPP-DTT:C6Si film, (d) pristine DPP-DTT film.

	μ _p ^{FET} [cm²/(V s)]	Vth [V]	ld/lg @Vg=-30V	lon/loff
DPP-DTT	10-1	-4	10 ³	10 ³
DPP-DTT:C6Si	10-2	-7	10 ³	10 ³

Table S1: Performance parameters of the OFETs fabricated with pristine DPP-DTT and DPP-DTT crosslinked by C6Si. Each value has been extrapolated from transfer curve measured in dark conditions.

Figure S2. Normalized absorption spectra of the BHJs.

Figure S3. (Left): Example of granular domain measurement from AFM micrographs for a a DPP-DTT:PC71BM-CHCl₃ film. Lateral size is $5x5\mu m$ Individual domains were automatically outlined via the Gwyddion segmentation algorithm after a 7px Gaussian Smoothing. (Right): Equivalent disc radius from

several individual grains is plotted as equivalent disc radius values. The resulting size distribution is monomodal with a mode of ~100nm, corresponding to a mean grain diameter of ~200nm.

Figure S4: Schematic device structure of (a) HOD and (b) EOD device structures.

Figure S5: J-V curves of the hole-only devices with structure ITO/PEDOT:PSS/BHJ/Au in which the three typical charge-transport regions are clearly visible: (i) ohmic region (J α V) highlighted in blue, (ii) trap-SCLC region (J α Vⁿ) region in yellow and (iii) SCLC region (J α V²) in green.

ВНЈ	Annealing	μ ^{scLC} _p [cm²/Vs] @10V	μ ^{SCLC} _n [cm²/Vs] @10V
(C)	135°C for 10'	3,4 · 10 ⁻⁵	1,1 · 10 ⁻⁶
(C)	-	1,2 · 10 ⁻⁵	7,3 · 10 ⁻⁵

Table S2 Performance parameters of the HODs and EODs fabricated with the BHJ based on DPP-DTT:PC₆₁BM processed from the $CHCl_3$:ODCB solvent mixtures, with and without annealing post-process on the BHJ. Each value has been extrapolated from measurements on 2 different devices.

Figure S6. Light responsivity R as function of the applied gate voltage V_g of multilayer OPTs with BHJ photoactive layer (a) **(A)**, (b) **(B)** and (c) **(C)**.

The data supporting this article have been included as part of the Supplementary Information.

Multiple Output Curve of OPT fabricated with the BHJ based on DPP-DTT:PC₆₁BM processed from the CHCl

Multiple Output Curve of OPT fabricated with the BHJ based on DPP-DTT:PC71BM processed from the CHCl

