Supplementary Information (SI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supporting information

Multifunctional Si₃N₄ nanobrick metasurface for sensing

Huimin Wang^{a,1}, Lu Wang^{a,1}, Tao Wang^{a,*}, Ming Shen^a, Xinzhao Yue^a, Enze Lv^a, Jinwei Zeng^a,

Xuewen Shu^{a,*}, and Jian Wang^{a,*}

^a Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology,

Wuhan, 430074, China.

- ¹ Huimin Wang and Lu Wang contributed equally to this work.
- * Corresponding author: Email: <u>wangtao@hust.edu.cn; xshu@hust.edu.cn; jwang@hust.edu.cn</u>

Fig. S1 Schematic diagram of the experimental measurement setup. A 5× microscope objective lens is chosen for observing.

Fig. S2 FOM and FWHM of dielectric metasurfaces with nanobricks with different refractive indices changing from n = 2 to n = 2.5. *P* and *H* are 360 nm and 350 nm, respectively. The duty cycles (*f*) of nanobricks with n = 2, 2.23, and 2.5 are 0.6, 0.52, and 0.45, respectively.

Fig. S3 Reflected colors of Si_3N_4 metasurfaces based on numerical simulations with different structural parameters. The simulated environment is air.

	Element	С	Ν	Si	0	Total
bare Si ₃ N ₄ metasurafce	Weight percentage (%)	0	58.10	30.30	11.61	100
metasurafce/silane-PEG- COOH	Weight percentage (%)	23.49	10.09	47.96	18.46	100

Table S1 Results of the energy dispersive spectrometer.

Fig. S4 Colors corresponding to simulated reflection spectra for the Si_3N_4 metasurface, metasurface/dielectric/AuNPs, and metasurface/dielectric/more AuNPs at the periods from 340 nm to 390 nm. The values of duty cycle (*f*) are 0.6, and 0.8 in (a) and (b), respectively. The simulated environment is PBS.

Fig. S5 Reflection spectra with *P* from 340 nm to 390 nm and f = 0.5 for Si₃N₄ metasurface (a) and Si₃N₄/dielectric/GF (b). Insets are the colors corresponding to the reflection spectra. The simulated environment is PBS.

Fig. S6 Reflection spectra with *P* from 340 nm to 390 nm and f = 0.6 for Si₃N₄ metasurface (a) and Si₃N₄/dielectric/GF (b). Insets are the colors corresponding to the reflection spectra. The simulated environment is PBS.

Fig. S7 Reflection spectra with *P* from 340 nm to 390 nm and f = 0.7 for Si₃N₄ metasurface (a) and Si₃N₄/dielectric/GF (b). Insets are the colors corresponding to the reflection spectra. The simulated environment is PBS.