
Supporting Information

Highly Efficient Organic-Graphene Hybrid Photodetectors via 

Molecular Peripheral Editing

Shuting Dai, a,b Miao Xie, c Can Wang, a Yuying Wang, c Bin Han, b Shunqi Xu, b Kexin Wang, b,d Anna 
Zhuravlova, b Bin Xu, a Lifeng Chi, c Wenjing Tian, a Paolo Samorì,*b

 Zhaoyang Liu*a

a State Key Laboratory of Supramolecular Structure and Materials, Jilin University

 Changchun 130012, China

b ISIS, Université de Strasbourg and CNRS, 8 allée Gaspard Monge

 Strasbourg 67000, France

c Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University

 199 Renai Road, Suzhou 215123, China

d Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical 

and Biological Engineering, Zhejiang University

Hangzhou 310027, China

* Corresponding authors. Emails for correspondence: samori@unistra.fr (Paolo Samorì), 

zhaoyangliu@jlu.edu.cn (Zhaoyang Liu)

Supplementary Information (SI) for Journal of Materials Chemistry C.
This journal is © The Royal Society of Chemistry 2024



Methods

1. Measurements 

UV-vis absorption spectra

The UV/vis absorption spectra of the TTF-NH2 and TTF-CHO solutions, as well as 

the TTF-Graphene hybrid films supported on the quartz substrate were recorded with a 

JASCO V-650 spectrophotometer. 

Raman Spectroscopy

Raman spectroscopy investigations were carried out in ambient conditions with a 

Renishaw inVia spectrometer equipped with a 532 nm laser, and the wavenumber 

(energy) resolution is about 1.25 cm-1 (≈1 meV). The excitation power was kept lower 

than 1 mW to avoid local heating damage effects. 

XPS Measurements

XPS measurements were carried out with a Thermo Scientific K-Alpha X-ray 

photoelectron spectrometer with Al anode as the X-ray source (X-ray radiation of 1486 

eV, Spot sizes of 400 μm). And basic chamber pressure is about 10–9 mbar. All XPS 

spectra were calibrated using the C 1s peak at 284.8 eV as a reference.

2. Equations for the calculation of parameters in devices

2.1 Mobility       
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2.2 Charge in the carrier density change
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2.3 Photoresponsivity        
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2.4 Specific Detectivity  
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3. Computational Details

The quantum mechanics calculations were performed using the Vienna Ab initio 

Simulation Package (VASP) version 5.4.4,1, 2 employing the projector augmented wave 

(PAW) method3, 4 and a plane wave basis set. We utilized the Perdew, Burke, and 

Ernzerhof (PBE)5 flavor of Density Functional Theory (DFT), supplemented by the 

post-stage DFT-D3 method to account for London dispersion (van der Waals attraction) 

with Becke-Johnson damping. The PAW method effectively addressed core-valence 

interactions. A kinetic energy cutoff of 400 eV was applied for plane wave expansions, 

and reciprocal space was sampled using the Γ-centered Monkhorst-Pack scheme with 

a grid of 1 × 1 × 1. Convergence criteria were judiciously set at 1 × 10-5 eV for energy 

differences in solving the electronic wave function, while atomic coordinates were 

diligently converged to within 1 × 10-2 eV Å-1 for maximal force components.

The gas-phase electronic structure calculations were performed using the Gaussian 

16 suite of programs (Revision A.01).6 The geometrical structures of the ground-state 

molecules were optimized by using the B3LYP hybrid functional combined with the 6-

31G(d) basis. Compared with the experimental data, it was shown that the energy levels 

obtained by O3LYP hybrid function is more accurate. Hence, the molecular orbital 

diagrams were calculated at the O3LYP/ 6-31G(d) level. 



In our investigation, we rigorously modeled the graphene surface using 14×14 unit 

cells, incorporating a 20 Å vacuum thickness to obviate any potential interactions 

between adjacent slabs. Throughout our calculations, all atomic entities were allowed 

to relax, thereby ensuring the attainment of a stable configuration. 

Table S1. Binding energies (eV) between TTF-derivatives and graphene system.

Graphene/TTF-NH2 TTF-NH2 graphene
Binding 

energya

-3093.97 -409.24 -2682.48 -2.25

Graphene/TTF-

CHO
TTF-CHO graphene Binding energy

-3106.73 -422.12 -2682.48 -2.13

a binding energy =Etotal−Egraphene−ETTF, where Etotal, Egraphene, and ETTF represent the 

calculated energies of the total graphene/TTF-derivatives system, graphene and TTF 

derivatives, respectively.



Table S2. The figures of merit of several reported graphene-based hybrid, 

graphene/TTF-NH2, and graphene/TTF-CHO photodetectors.

Responsivity       

(A/W)

Detectivity 

(Jones)
Response time References

RG6 460 1010 <100 ms [7]

C8-BTBT 1.57×104 - <25 ms [8]

Ru-Complex 1×105 - 2.8 s [9]

COFETBC-TAPT 3.2×107 6×1013 1.14 ms [10]

PTCDA/pentacene 105 - <30 μs [11]

PTCDI-C8 2×105 1016 ~10  ms [12]

rubrene 107 9×1011 ~100 ms [13]

MOF >106 6.9×1014 <150 ms [14]

TTF-CA 105 1013 8 ms [15]

PTCDA/C8-BTBT 5.76×105 - 470 ms [16]

PTAA/
CH3NH3PbI3−xCl

x

105
1013 310 ms [17]

PbS QDs 107 7×1013 10 ms [18]

BUBD-1 ~106 >1012 0.3 ms [19]

TTF-NH2 1.8×107 1.1×1015 267 ms This work

TTF-CHO 2.0×106 3.2×1014 381 ms This work



Table S3. The figures of merit of graphene/TTF-NH2 and graphene/TTF-CHO 

photodetectors under 300 nm irradiation.

Power density 

(W/cm2)
7.6E-6 9.2E-6 1.5E-5 2.1E-5 3.0E-5

Responsivity (A/W) 1.1E7 9.4E6 7.0E6 5.7E6 4.8E6

Graphene/

TTF-NH2

Detectivity (Jones) 6.5E14 5.5E14 4.1E14 3.4E14 2.8E14

Power density 

(W/cm2)
6.7E-6 9.0E-6 1.7E-5 4.6E-5 1.1E-4

Responsivity (A/W) 1.2E6 1.09E6 8.7E5 4.3E5 1.3E5

Graphene/

TTF-NH2

Detectivity (Jones) 1.5E14 1.3E14 1.1E14 5.3E13 1.6E13

Power density 

(W/cm2)
1.1E-6 6.1E-6 7.6E-6 9.2E-6 1.5E-5

Responsivity (A/W) 1.8E7 1.3E7 1.2E7 1.1E7 8.0E6

Graphene/

TTF-NH2

Detectivity (Jones) 1.1E15 7.6E14 7.0E14 6.5E14 4.8E14

Power density 

(W/cm2)
3.8E-6 7.6E-6 9.2E-6 1.5E-5 2.1E-5

Responsivity (A/W) 2.1E7 1.7E7 1.6E7 1.3E7 1.1E7

Graphene/

TTF-NH2

Detectivity (Jones) 1.1E15 9.6E14 8.8E14 7.2E14 5.8E14

Power density 

(W/cm2)
3.8E-6 7.6E-6 1.5E-5 2.1E-5 3.0E-5Graphene/

TTF-CHO
Responsivity (A/W) 2.0E6 1.5E6 1.0E6 9.6E5 7.8E5



Detectivity (Jones) 3.2E14 2.4E14 1.7E14 1.5E14 1.3E14

Power density 

(W/cm2)
3.8E-6 7.6E-5 1.5E-5 2.1E-5 3.0E-5

Responsivity (A/W) 1.1E6 9.4E5 8.3E5 7.0E5 6.2E5

Graphene/

TTF-CHO

Detectivity (Jones) 1.2E14 1.0E14 9.2E13 7.7E13 6.8E13

Figure S1. Monolayer graphene visualized by AFM, showing a thickness of 0.69 nm. 

The AFM measurement of the selected graphene flake for device fabrication shows a 

thickness of 0.69 nm, demonstrating the monolayer nature of graphene.



Figure S2. C1s XPS spectra of (A) CVD graphene, (B) CVD graphene/TTF-NH2 

hybrids, and (C) CVD graphene/TTF-CHO hybrids; (D) N1s XPS spectra of CVD 

graphene/TTF-NH2 hybrids; Cl2p XPS spectra of (E) CVD graphene/TTF-NH2 hybrids 

and (F) CVD graphene/TTF-CHO hybrids.



Figure S3. Work function plots of (A) CVD graphene/TTF-NH2 and (B) CVD 

graphene/TTF-CHO measured by Photoelectron Yield Spectroscopy in Ambient 

conditions (PYSA). 

Figure S4. Molecular configurations calculated by density functional theory (DFT) of 

pristine (A) TTF-NH2 and (C) TTF-CHO; Optimized molecular configurations (i.e., 

configurations with the lowest energy) of (B) TTF-NH2 and (D) TTF-CHO when 

adsorbed onto the graphene surface.



Figure S5. Normalized UV-Vis absorption spectra of (A) TTF-NH2 and (B) TTF-CHO 

solution with different concentrations; (C) Absorbance at 300 nm as a function of the 

concentration of TTF-NH2 (R2 = 0.9956) and TTF-CHO (R2 = 0.9995) solutions.

Figure S6. (A) UV-vis absorption spectra of pristine CVD-graphene, TTF-NH2, and 

graphene/TTF-NH2. (B) UV-vis absorption spectra of pristine CVD-graphene, TTF-

CHO, and graphene/TTF-CHO.



Figure S7. PXRD patterns of pristine HOPG and TTF-derivatives drop-casted onto the 

HOPG surface.

          

Figure S8. Transfer characteristics of the pristine graphene FET under dark and light 

irradiation with different wavelength.



Figure S9. Cyclic voltammetry curves of (A) TTF-NH2, (B) TTF-CHO, and (C) 

ferrocenium/ferrocene.



Figure S10. (A-C) Transfer curves of different graphene/TTF-NH2 hybrid devices 

under light illumination (Vds=50 mV); (D-F) Corresponding photoresponsivity and 

specific detectivity change in response to 300 nm illumination under varying power 

densities.



Figure S11. (A) Transfer curves of graphene/TTF-CHO hybrid device, where TTF-

CHO was spin-coated onto the graphene FET, under different power densities of 300 

nm illumination (Vds=50 mV); (B) Energy diagrams of the graphene/TTF-CHO 

hybrids; (C) Photocurrent curves with varying illumination power densities and 

wavelengths; (D) Photoresponsivity of graphene/TTF-CHO transistor under different 

wavelengths. The black line is the corresponding absorbance of the TTF-CHO film; (E) 

Temporal photocurrent response of the device under dark and 450 nm irradiation; (F) 

Photoresponsivity and specific detectivity change in response to 300 nm illumination 

under varying power densities. 



Figure S12. (A) Transfer curves of graphene/TTF-CHO hybrid device, where TTF-

CHO was drop-cast onto the graphene FET at a concentration of 0.5 mM at 70 C, under 

different power densities of 300 nm illumination (Vds = 50 mV); Corresponding (B) 

photoresponsivity and specific detectivity performance under 300 nm illumination, (C) 

temporal photocurrent under dark and 450 nm irradiation, and (D) photoresponsivity 

under different wavelengths of the graphene/TTF-CHO transistor.

Figure S13. Long-term stability tests based on the photoresponsitivity of 

graphene/TTF-NH2 (A) and graphene/TTF-CHO (B) hybrid devices.



Figure S14. AFM images of TTF-NH2 films on graphene: (A) after the first drop-

casting (RRMS:5.1 nm, 1.0 ×1.0 μm2), (B) after the second drop-casting (RRMS:10.3 nm, 

1.0 ×1.0 μm2), and (C) after the third drop-casting (RRMS:11.8 nm, 1.0 ×1.0 μm2); AFM 

images of spin-coated TTF-CHO films: (D) 3.2 mM solution at a spin rate of 600 rpm 

(RRMS:1.2 nm, 1.0 ×1.0 μm2), (E) 8.0 mM solution at a spin rate of 600 rpm (RRMS:1.5 

nm, 1.0 ×1.0 μm2), and (F) 8.0 mM solution at a spin rate of 400 rpm (RRMS:12.1 nm, 

1.0 ×1.0 μm2).



Figure S15. (A) Transfer curves of graphene/TTF-NH2 hybrid device after step-by- 

step drop-casting process. (B) Photoresponsivity changes with thickness accumulation 

during step-by-step drop-casting. (C) Transfer curves and (D) Photoresponsivity 

changes of the graphene/TTF-CHO hybrid device at different concentrations and spin-

coating speeds of the TTF-CHO solution.
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