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The section of calculation:

1. The bleach recovery kinetics were fitted by a double exponential decay equation:1

                                                                           (1)  𝐴(𝑡) = 𝐴1ⅇ
‒

𝑡
𝜏1 + 𝐴2ⅇ

‒
𝑡

𝜏2

Where A1 and A2 are the amplitudes of each component and  and  are the corresponding lifetimes. 𝜏1 𝜏2

Then, the average lifetimes were calculated by the following equation:

                                                                              (2)
𝜏𝑎𝑣𝑔 =

𝐴1𝜏2
1 + 𝐴2𝜏2

2

𝐴1𝜏1 + 𝐴2𝜏2

     The radiative (krad) and nonradiative recombination rates (knonrad) of the control and N-MTU-modified perovskite 

films were calculated by the following equations: 2

                                                                         (3)

1
𝜏𝑎𝑣𝑔

= 𝑘𝑟𝑎𝑑 + 𝑘𝑛𝑜𝑛𝑟𝑎𝑑

                                                                          (4)
𝑃𝐿𝑄𝑌 =

𝑘𝑟𝑎𝑑

𝑘𝑟𝑎𝑑 + 𝑘𝑛𝑜𝑛𝑟𝑎𝑑

                                                                               (5)
𝑘𝛾𝑎𝑑 =

𝑃𝐿𝑄𝑌
𝜏𝑎𝑣𝑔

                                                                        (6)
𝑘𝑛𝑜𝑛𝑟𝑎𝑑 =

1
𝜏𝑎𝑣𝑔

‒ 𝑘𝛾𝑎𝑑

2. The characterization of space charge limited current (SCLC):

The charge carrier mobility was fitted by the current density-voltage (J-V) curves of only-electron/hole devices 

using SCLC measurements.

The Mott-Gurney law:3,4

                                                                              (7)  
𝐽 =

9
8

𝜇𝜀0𝜀𝑟
𝑉2

𝐿3

Where  is the current density,  is the charge carrier mobility,  is vacuum dielectric constant,  is the 𝐽 𝜇 𝜀0 𝜀𝑟

relative dielectric constant ( ),  is the applied voltage and L is the thickness between the cathode and 𝜀𝑟 = 3 𝑉

anode of the perovskite film.
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Poople-Frenkel law:5

                                                                            (8)𝜇 = 𝜇0ⅇ𝛾 𝐸

Where  is the zero electric filed mobility,  is the electric filed dependence factor, and E is the electric 𝜇0 𝛾

field (E = V/L).

Combined the Mott-Gurney law and Poople-Frenkel law, we can deduce the relational expression as following:

                                                              (9)
ln ( 𝐽

𝐸2) = ln (9
8

𝜀𝑟𝜀0𝜇0

𝐿 ) + 𝛾 𝐸

There is a liner relationship between  and . The  and  can be obtained by fitting the slope and 
ln ( 𝐽

𝐸2) 𝐸 𝛾 𝜇0

intercept. Then, the field-dependent charge-carrier mobility under fixed electric field was got by 

substituting  and  into Poople-Frenkel law.𝛾 𝜇0
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Figure S1. XRD patterns of the control and N-MTU-modified PEA2SnI4 film.

Figure S2. PL Spectra for the calculation of PLQYs of PEA2SnI4 films without (a) and with N-MTU additive (b).

All sample bases used to calculate PLQY were ITO/PEDOT:PSS, and the subtraction of the bases was completed 

before the test.

Table S1. The calculated PL lifetimes data of perovskite films without and with N-MTU additive.

Calculated data Control With N-MTU

A
1

4535.68 4360.08

A
2

165.92 775.09
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Figure S3. Pseudocolor maps of low-temperature-dependent PL spectra (a, b) and exciton binding energy fitting 

curves (c) of the control and N-MTU modified PEA2SnI4 films. 

Figure S4. Photographs of the fresh PEA2SnI4 precursor solution (top) and aged PEA2SnI4 precursor solution in 

the air for 24h (bottom) without and with N-MTU ligands.
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Figure S5. PL stability of PEA2SnI4 thin films with and without N-MTU ligands in air under room temperature.

Figure S6. SCLC characteristics of the electron-only (a) and hole-only (b) devices consisting of pristine and N-

MTU-modified PEA2SnI4 emission layer. 

Figure S7.  -  curves of electron-only devices (a, b) and hole-only devices (c, d).
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Figure S8. Electric filed-dependent charge-carrier mobility of the electron-only and hole-only devices.
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Figure S9. Device structure of the PeLEDs.

Figure S10. Tauc-plots from the UV–vis absorbance characterizations of control (a) and N-MTU modified PEA2SnI4 

films (d). The UPS spectra of control (b, c) and N-MTU-modified PEA2SnI4 films (e, f).  

Figure S11. CIE chromaticity coordinates of the N-MTU-based PEA2SnI4 PeLED and ITU-R Recommendation 

BT.2020 (Rec.2020) standards.

Table S2. Summary of the device performances of the reported pure-red PEA2SnI4-based PeLEDs.
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