Improving the performance of pure-red 2D tin-based perovskite

light-emitting diodes through N-methylthiourea ligand engineering-

Supporting Information

Shulan Zhang ^{a,c}; Mujing Qu ^a; Jiaxin Duan^a; Henglong Dai^a; Tongtong Xuan^{b*}; Rongjun Xie^{b*}; and Huili Li^{a, c*}

AFFILIATIONS

^aEngineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China

^bFujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen 361005, China

Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China

*Correspondence: ttxuan@xmu.edu.cn (T.X.), rjxie@xmu.edu.cn (R. X.), hlli@phy.ecnu.edu.cn (H.L.);

The section of calculation:

1. The bleach recovery kinetics were fitted by a double exponential decay equation:¹

$$A(t) = A_1 e^{-\frac{t}{\tau_1}} + A_2 e^{-\frac{t}{\tau_2}}$$
(1)

Where A_1 and A_2 are the amplitudes of each component and τ_1 and τ_2 are the corresponding lifetimes. Then, the average lifetimes were calculated by the following equation:

$$\tau_{avg} = \frac{A_1 \tau_1^2 + A_2 \tau_2^2}{A_1 \tau_1 + A_2 \tau_2} \tag{2}$$

The radiative (k_{rad}) and nonradiative recombination rates (k_{nonrad}) of the control and N-MTU-modified perovskite films were calculated by the following equations: ²

$$\frac{1}{\tau_{avg}} = k_{rad} + k_{nonrad} \tag{3}$$

$$PLQY = \frac{k_{rad}}{k_{rad} + k_{nonrad}}$$
(4)

$$k_{\gamma ad} = \frac{PLQY}{\tau_{avg}} \tag{5}$$

$$k_{nonrad} = \frac{1}{\tau_{avg}} - k_{\gamma ad} \tag{6}$$

2. The characterization of space charge limited current (SCLC):

The charge carrier mobility was fitted by the current density-voltage (*J*-V) curves of only-electron/hole devices using SCLC measurements.

The Mott-Gurney law:^{3,4}

$$J = \frac{9}{8}\mu\varepsilon_0\varepsilon_r\frac{V^2}{L^3} \tag{7}$$

Where J is the current density, μ is the charge carrier mobility, ε_0 is vacuum dielectric constant, ε_r is the relative dielectric constant ($\varepsilon_r = 3$), V is the applied voltage and L is the thickness between the cathode and anode of the perovskite film.

Poople-Frenkel law:5

$$\mu = \mu_0 e^{\gamma \sqrt{E}} \tag{8}$$

Where μ_0 is the zero electric filed mobility, γ is the electric filed dependence factor, and E is the electric field (E = V/L).

Combined the Mott-Gurney law and Poople-Frenkel law, we can deduce the relational expression as following:

$$\ln\left(\frac{J}{E^2}\right) = \ln\left(\frac{9\varepsilon_r\varepsilon_0\mu_0}{8-L}\right) + \gamma\sqrt{E} \tag{9}$$

There is a liner relationship between $\ln\left(\frac{E^2}{E^2}\right)$ and \sqrt{E} . The γ and μ_0 can be obtained by fitting the slope and intercept. Then, the field-dependent charge-carrier mobility under fixed electric field was got by substituting γ and μ_0 into Poople-Frenkel law.

Figure S1. XRD patterns of the control and N-MTU-modified PEA₂SnI₄ film.

Table S1. The calculated PL lifetimes data of perovskite films without and with N-MTU additive.

Calculated data	Control	With N-MTU
A	4535.68	4360.08
A ₂	165.92	775.09

τ ₁ (ns)	0.49	0.84
τ ₂ (ns)	3.02	2.97
τ _{avg} (ns)	1.95	2.30
k _{rad} (μs ⁻¹)	12.82	23.04
k (μs ⁻¹)	50.00	41.17

Figure S3. Pseudocolor maps of low-temperature-dependent PL spectra (a, b) and exciton binding energy fitting curves (c) of the control and N-MTU modified PEA₂SnI₄ films.

Figure S4. Photographs of the fresh PEA₂SnI₄ precursor solution (top) and aged PEA₂SnI₄ precursor solution in the air for 24h (bottom) without and with N-MTU ligands.

Figure S5. PL stability of PEA₂SnI₄ thin films with and without N-MTU ligands in air under room temperature.

 ${}^{\!\!\!/ E}$ curves of electron-only devices (a, b) and hole-only devices (c, d).

Figure S8. Electric filed-dependent charge-carrier mobility of the electron-only and hole-only devices.

Figure S9. Device structure of the PeLEDs.

Figure S10. Tauc-plots from the UV–vis absorbance characterizations of control (a) and N-MTU modified PEA₂SnI₄ films (d). The UPS spectra of control (b, c) and N-MTU-modified PEA₂SnI₄ films (e, f).

Figure S11. CIE chromaticity coordinates of the N-MTU-based PEA₂SnI₄ PeLED and ITU-R Recommendation BT.2020 (Rec.2020) standards.

Table S2. Summary of the device performances of the reported pure-red PEA₂SnI₄-based PeLEDs.

References	EQE _{MAX} (%)	L _{MAX} (cd/m ²)	EL Peak (nm)	FWHM (nm)
ACS Photonics 2020, 7, 1915-1922	0.72	132	632	/
Adv. Sci. 2020, 7, 1903213	0.3	70	633	24
J. Phys. D: Appl. Phys. 2020, 53, 414005	0.52	355	630	29
Sci. Adv. 2020, 6, eabb0253	5	170	632	21
Adv. Funct. Mater. 2021, 31, 2106974.	0.361	68.84	/	/
J. Mater. Chem. C 2021, 9, 12079-12085	1.48	221	633	/
ACS Appl. Mater. Interfaces 2022, 14, 22941–22949	0.4	43.3	625	28
ACS Energy Lett. 2022, 7, 3653-3655	1	30	630	25
Adv. Funct. Mater. 2023, 2301304	3.51	451	630	23
J. Mater. Chem. C 2023, 11, 9916-9924	0.86	50	630	23
Angew.Chem. Int.Ed. 2023, e202312728	9.32	328.2	625	33
This Work	2.35	509.4	626	33

REFERENCES:

1 F. Yuan, X. Zheng, A. Johnston, Y.-K. Wang, C. Zhou, Y. Dong, B. Chen, H. Chen, J. Z. Fan, G. Sharma, P. Li, Y. Gao, O. Voznyy, H.-T. Kung, Z.-H. Lu, O. M. Bakr and E. H. Sargent, *Sci. Adv.*, 2020, *6*, eabb0253.

2 Z. Ren, J. Yu, Z. Qin, J. Wang, J. Sun, C. C. S. Chan, S. Ding, K. Wang, R. Chen, K. S. Wong, X. Lu, W. Yin and W. C. H. Choy, *Adv. Mater.*, 2021, **33**, 2005570.

3 L. Pauling, .

4 T. Chiba, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y.-J. Pu, S. Ohisa and J. Kido, *Nat. Photonics*, 2018, **12**, 681–687.

5 R. I. Frank and J. G. Simmons, J. Appl. Phys., 1967, 38, 832-840.