Electronic Supplementary Information for

Tuning the Fluorescence Emission of DADQ Based Molecular Solids by Dielectric Environment Variation

Nikita Mahajan and T. P. Radhakrishnan*

School of Chemistry, University of Hyderabad, Hyderabad – 500 046, India

*Email: tpr@uohyd.ac.in

Content	Page
Fluorescence emission tuning in DADQ derivatives (Figure S1)	S2-S3
Crystallographic details (Figure S2, Tables S1-S3)	S4-S7
Fluorescence excitation spectra (Figure S3)	S8
Fluorescence changes of BFPDQ-PVDF and BMPDQ-PVDF (Figure S4)	S9
Fluorescence changes of BMPDQ on exposure to different acids (Figure S5)	S10
Optical images of BFPDQ acid exposed and recrystallised (Figure S6)	S11
¹³ C NMR spectra of BFPDQ and BMPDQ (Figure S7)	S12
HRMS of BFPDQ and BMPDQ exposed to acetic acid vapor (Figure S8)	S13
Assignment of the HRMS peaks of BFPDQ and BMPDQ (Table S4)	S13
Computational details (Tables S5, S6)	S14-S23
Capacitance measurements (Figure S9, Table S7)	S24
SKPM topography and surface potential images of BMPDQ (Figure S10)	S25

Figure S1. (a) Schematic diagram of the setup used for exposing the DADQ samples to acid vapors at a controlled temperature. (b) The structure and (c) optical images (under UV light) of the DADQs upon exposure to acetic acid vapor for different time periods (min) showing the fluorescence changes and the corresponding fluorescence emission spectra [BFPDQ (λ_{exc} = 380 nm), BMPDQ (λ_{exc} = 395 nm), BNMPDQ (λ_{exc} = 400 nm), BPPDQ (λ_{exc} = 400 nm), and BBADQ (λ_{exc} = 395 nm)].

Figure 1 (contd...)

Figure 1(c)

Crystallographic details

	BFPDQ	BFPDQ-Ac*	BMPDQ
Empirical Formula	$C_{26}H_{22}N_4F_2$	$C_{26}H_{22}N_4F_2$	$C_{20}H_{24}N_4$
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	$P2_1/c$	$P2_1/c$	C2/c
a /Å	9.555(3)	9.5002(4)	13.2460 (12)
b / Å	15.114(5)	15.0682(8)	11.8421 (9)
c / Å	15.708(5)	15.6698(8)	11.3670 (12)
β/°	102.466(11)	102.424(5)	97.842 (9)
$V / Å^3$	2215.0(12)	2190.62(19)	1766.4 (3)
Ζ	4	4	4
$\rho_{\text{calc}} (\text{g cm}^{-3})$	1.285	1.299	1.205
$\mu (mm^{-1})$	0.089	0.090	0.073
Temperature (K)	293	293	100
λ (Å)	0.71073	0.71073	0.71073
No. of reflections	5430	4651	1532
No. of parameters	289	289	113
Max., Min. transmission	0.990, 0.981	0.991, 0.986	0.990, 0.985
GOF	1.0332	1.1132	0.969
R [for $I \ge \sigma_1$]	0.0554	0.0583	0.0684
wR ²	0.1555	0.1977	0.2204
Largest difference peak and hole /e $Å^{-3}$	0.37/-0.32	0.32/-0.35	0.35/-0.38
CCDC deposition number	2350446	2350467	2350461

 Table S1. Crystallographic data of BFPDQ and BMPDQ.

*BFPDQ treated with acetic acid and recrystallized

Figure S2. Molecular structure of (a) BFPDQ (b) BFPDQ treated with acetic acid, and (c) BMPDQ from single crystal X-ray diffraction analysis. C (grey), N (blue), F (green) and H (white) atoms are shown with 90% thermal ellipsoids.

Atoms	Bond Length
F2 C24	(A)
F2-C24	1.359 (3)
FI-CI6	1.368 (3)
N1-C11	1.469 (3)
N1-C7	1.322 (3)
N2-C7	1.323 (3)
N2-C19	1.462 (3)
C2-C1	1.397 (3)
C2-C3	1.392 (3)
N3-C9	1.161 (2)
N4-C10	1.155 (4)
C16-C17	1.364(5)
C16-C15	1.364 (5)
C17-C18	1.390 (4)
C18-C13	1.384 (4)
C13-C12	1.522 (3)
C13-C14	1.391 (4)
C12-C11	1.497 (4)
C7-C1	1.464 (3)
C19-C20	1.546 (4)
C20-C21	1.513 (4)
C21-C26	1.403 (4)
C21-C22	1.395 (4)
C26-C25	1.380 (5)
C25-C24	1.371 (4)
C24-C23	1.386 (5)
C1-C6	1.410 (3)
C3-C4	1.413 (3)
C4-C5	1.422 (4)
C4-C8	1.446 (3)
C5-C6	1.377 (3)
C8-C9	1.407 (4)
C8-C10	1.400 (4)
C23-C22	1.375 (5)
C14-C15	1.392 (4)

Table S2. Bond lengths, bond angles and relevant torsion angles in BFPDQ (Figure S2a).

Atoms	Bond Angle (°)
C7-N1-C11	122.88 (19)
H1-N1-C11	118.56 (12)
H1-N1-C7	118.56 (12)
C19-N2-C7	128.4 (2)
H2-N2-C7	115.81 (13)
H2-N2-C19	115.81 (12)
C3-C2-C1	121.5 (2)
C17-C16-F1	118.5 (3)
C15-C16-F1	118.0 (3)
C15-C16-C17	123.4 (3)
C18-C17-C16	118.2 (3)
C13-C18-C17	120.9 (3)
C12-C13-C18	117.7 (2)
C14-C13-C18	118.6 (2)
C14-C13-C12	123.6 (2)
C11-C12-C13	113.6 (2)
C12-C11-N1	111.5 (2)
N2-C7-N1	118.4 (2)
C1-C7-N1	118.58 (19)
C1-C7-N2	123. (2)
C20-C19-N2	111.5 (2)
C21-C20-C19	110.3 (2)
C26-C21-C20	121.6 (3)
C22-C21-C20	120.60 (3)
C22-C21-C26	117.7 (3)
C25-C26-C21	121.5 (3)
C24-C25-C26	118.4 (3)
C25-C24-F2	119.1 (3)
C23-C24-F2	118.5 (3)
C23-C24-C25	122.4 (3)
C7-C1-C2	119.2 (2)
C6-C1-C2	118.1 (2)
C6-C1-C7	122.7 (2)
C4-C3-C2	120.6 (2)
C5-C4-C3	117.4 (2)
C8-C4-C3	121.1 (2)
C8-C4-C5	121.6 (2)
C6-C5-C4	121.4 (2)
C5-C6-C1	120.9 (2)
C9-C8-C4	121.0 (2)
C10-C8-C4	122.0 (2)
C10-C8-C9	117.0 (2)
C8-C9-N3	178.5 (3)
C8-C10-N4	178.6 (3)
C22-C23-C24	118.2 (3)
C23-C22-C21	121.7 (3)
C15-C14-C13	121.1 (3)
C14-C15-C16	117.7 (3)

Atoms	Torsion angle (°)
N2-C7-C1-C6	43.714 (2)
N1-C7-C1-C2	40.471 (5)
C3-C4-C8-C9	8.386 (2)
C5-C4-C8-C10	9.571 (2)

Atoms	Bond Length (Å)
N1-C7	1.314 (6)
N2-C7	1.314 (6)
N1-C11	1.508 (7)
N2-C16	1.508 (7)
N1-C14	1.518 (8)
N2-C19	1.518 (8)
C7-C1	1.459(10)
C1-C2	1.418 (7)
C1-C6	1.418 (7)
C2-C3	1.387 (8)
C6-C5	1.387 (8)
C5-C4	1.444 (6)
C4-C3	1.444 (6)
C4-C8	1.420 (10)
C8-C10	1.409 (8)
C8-C9	1.409 (8)
C11-C12	1.532 (9)
C12-C13	1.544 (10)
C13-C14	1.561 (9)
C14-C15	1.503 (11)
C16-C17	1.532 (9)
C17-C18	1.544 (10)
C18-C19	1.561 (9)
C19-C20	1.503 (11)
N3-C9	1.182 (8)
N4-C10	1.182 (8)

Atoms	Bond Angle (°)
C11-N1-C7	123.7 (5)
C14-N1-C7	124.1 (5).
C14-N1-C11	111.3 (5)
N1-C7-N1	120.7 (7)
C1-C7-N1	119.6 (4)
C1-C7-N1	119.6 (4)
C1-C2-C3	121.5 (6)
C3-C4-C3	118.4 (7)
C8-C4-C3	120.8 (3)
C8-C4-C3	120.8 (3)
C4-C3-C2	119.9 (5)
C2-C1-C7	120.7 (4)
C2-C1-C7	120.7 (4)
C2-C1-C2	118.6 (7)
C10-C8-C4	121.9 (4)
C10-C8-C4	121.9 (4)
C10-C8-C10	116.3 (7)
C8-C10-N2	177.6 (6)
C12-C11-N1	102.2 (5)
C13-C14-N1	102.0 (5)
C15-C14-N1	111.2 (6)
C15-C14-C13	114.0 (6)
C13-C12-C11	102.3 (6)
C12-C13-C14	104.2 (6)

Table S3. Bond lengths, bond angles and relevant torsion	n angles in BMPD	Q (Figure S2c).
--	------------------	-----------------

Atoms	Torsion angle (°)
N2-C7-C1-C6 N1-C7-C1-C2	56.947 (3)
C5-C4-C8-C10 C3-C4-C8-C9	15.316(3)

Figure S3. Absorption and fluorescence excitation spectra of (a, b) BFPDQ and (c, d) BMPDQ in acetonitrile solution (BMPDQ: 2.5 μ M and BFPDQ: 4.0 μ M) and the solid state.

Figure S4. (a) Optical images (under UV light) of BFPDQ-PVDF upon exposure to acetic acid vapor for different time periods (min), showing the fluorescence changes and the corresponding fluorescence emission spectra ($\lambda_{exc} = 380$ nm). (b) Optical images (under UV light) of BMPDQ-PVDF upon exposure to acetic acid vapor showing the fluorescence changes and the corresponding fluorescence emission spectra ($\lambda_{exc} = 395$ nm).

Figure S5. (a) Optical images (under UV light) of BMPDQ upon exposure to different acid vapors for 30 min showing the fluorescence changes and (b) the corresponding fluorescence emission spectra ($\lambda_{exc} = 395$ nm). A: acetic acid, B: trifluoroacetic acid, C: hydrofluoric acid, D: formic acid.

Figure S6. Optical images under ambient (left) and UV (right) light: BFPDQ (a) as prepared and (b) exposed to acetic acid vapor for 30 min followed by recrystallization in methanol. (c, d) Similar images of BMPDQ.

Figure S7. ¹³C NMR spectra of (a) BFPDQ and (b) BMPDQ before (purple) and after (green) exposure to acetic acid vapor for 15 min; the new peaks are indicated (broken line box).

Figure S8. High resolution mass spectra of (a) BFPDQ and (b) BMPDQ as prepared and exposed to acetic acid vapor for different time periods (min) at 140 °C; ratio of the intensities of the M⁺ and M+H⁺ peaks $\left(\frac{I_{M+H^+}}{I_{M^+}} = x\right)$ are shown in (b). The spectra were recorded on a Bruker Maxis spectrometer, in ESI mode.

Table S4. Assignment of the prominent peaks in the HRMS of BFPDQ and BMPDQ.

BFPDQ			
m/z,	Formula	Assignment	
429.1886	$C_{26}H_{22}N_4F_2 + H^+$	$]M + H]^+$	
451.1694	$C_{26}H_{22}N_4F_2 + Na^+$	$[M + Na]^+$	
436.1879*	$C_{24}H_{22}N_2F_2 CH_3COO + H^+$	$[M [-2(CN) + CH_3COO] + H^+]^+$	
447.2033*	$C_{26}H_{21}N_4F + K^+$	$[M - (H) - (F)] + K^+$	
BMPDQ			
m/z,	Formula	Assignment	
320.2009	$C_{20}H_{24}N_4$	$[M]^+$	
321.2077	$C_{20}H_{24}N_4 + H^+$	$[M + H]^+$	
333.1616	$C_{19}H_{24}N_3 + K^+$	$[M - CN] + [K]^+$	
328.1996*	$C_{18}H_{24}N_2CH_3COO+H^+$	$[M [-2(CN) + CH_3COO] + H^+]^+$	

*Arising as a consequence of the protonation

Computational Details

The salient results of the TD-DFT computation (B3LYP/6-31G*) using the electronic ground state (from the crystal structure) and optimized electronic excited state structures are provided below. The excited states with high oscillator strength (f) are listed; the corresponding energies (in eV and nm), MOs involved in the excitation, and their relative contributions are listed.

Ground state geometry

$\varepsilon = 0$		
Excited State	1: Singlet-A	2.9442 eV 421.11 nm f=0.6209 <s**2>=0.000</s**2>
84 -> 87	-0.10922	
86 -> 87	0.69432	
Excited State	3: Singlet-A	4.6842 eV 264.69 nm f=0.2376 <s**2>=0.000</s**2>
86 -> 89	0.69341	
Excited State	7: Singlet-A	5.8159 eV 213.18 nm f=0.2465 <s**2>=0.000</s**2>
82 -> 87	0.68541	
ε = 1.6		
Excited State	1: Singlet-A	$3.0701 \text{ eV} 403.84 \text{ nm} = 0.7218 < S^{**2} = 0.000$
84 -> 87	-0.11207	
86 -> 8/	0.69142	5 (005 N 015 55 C 0 0005 (0**0) 0 000
Excited State	6: Singlet-A	$5.6985 \text{ eV} 217.57 \text{ nm} = 0.2907 < S^{2} = 0.000$
83 -> 8/	0.08400	$(92(7 - 3), 191(2), \dots, 6-0.520(-53**2) = 0.000)$
Excited State	12: Singlet-A	$6.826 / eV = 181.62 \text{ nm} = 0.5296 < S^{**}2 = 0.000$
// -> 8/	0.11518	
04 -> 09 05 _ 00	0.21904	
03 -> 00	0.02/33	
80 ->101	-0.10041	
ε = 1.8		
Excited State	1: Singlet-A	3.1206 eV 397.31 nm f=0.7236 <s**2>=0.000</s**2>
84 -> 87	-0.11228	
86 -> 87	0.69095	
Excited State	6: Singlet-A	5.6809 eV 218.25 nm f=0.2896 $<$ S**2>=0.000
83 -> 87	0.68321	
Excited State	10: Singlet-A	6.6694 eV 185.90 nm f= $0.1926 < S^{**}2 > = 0.000$
82 -> 91	0.18673	
84 -> 88	-0.20585	
85 -> 89	0.228/1	
86 -> 93	-0.1/48/	
86 -> 94	0.53918	
$\varepsilon = 2$		
Excited State	I: Singlet-A	3.1636 eV 391.91 nm t= $0.7254 < S^{**2} = 0.000$
84 -> 87	-0.11234	
86 -> 8/	0.69057	
Excited State	6: Singlet-A	5.6663 eV 218.81 nm f= $0.2883 < S^{**2} = 0.000$
83 -> 8'/	0.68149	((542 M 10(22 C 0 20(2) (0**2) 0.000
Excited State	9: Singlet-A	0.0342 ev 180.33 nm I= $0.2063 < 8^{**}2 > = 0.000$
82 -> 91	0.19220	
84 -> 88	-0.11329	
85 -> 89	0.15980	
86 -> 93	0.60106	
86 -> 94	0.15104	

Ground state molecular structure: from single crystal diffraction study $\varepsilon = 3$ 3.3086 eV 374.74 nm f=0.7329 <S**2>=0.000 Excited State 1: Singlet-A 84 -> 87 -0.11174 86 -> 87 0.68934 Excited State 9: Singlet-A 6.5952 eV 187.99 nm f=0.2217 <S**2>=0.000 82 -> 90 0.19354 84 -> 93 0.10067 86 -> 93 0.64681 Excited State 11: Singlet-A 6.8459 eV 181.11 nm f=0.5853 <S**2>=0.000 78 -> 87 -0.10637 84 -> 89 -0.19590 85 -> 88 0.63729 $\epsilon = 4$ Excited State 1: 3.3910 eV 365.63 nm f=0.7382 <S**2>=0.000 Singlet-A -0.11082 83 -> 87 86 -> 87 0.68871 Excited State 6: Singlet-A 5.6027 eV 221.29 nm f=0.2571 <S**2>=0.000 83 -> 88 0.10121 84 -> 87 0.65123 85 -> 87 -0.20187 6.8527 eV 180.93 nm f=0.6046 <S**2>=0.000 Excited State 11: Singlet-A 79 -> 87 -0.11492 83 -> 89 -0.18716 85 -> 88 0.63529 $\varepsilon = 5$ 3.4441 eV 359.99 nm f=0.7419 <S**2>=0.000 Excited State 1: Singlet-A 83 -> 87-0.11000 86 -> 87 0.68833 Excited State 9: Singlet-A 6.5401 eV 189.58 nm f=0.2362 <S**2>=0.000 82 -> 90 0.18986 83 -> 92 0.10189 86 -> 92 0.65316 6.8573 eV 180.81 nm f=0.6171 <S**2>=0.000 Excited State 11: Singlet-A 79 -> 87 -0.12216 83 -> 89 -0.18126 84 -> 88 -0.12560 85 -> 88 0.63022 ε = 6 Excited State 1: Singlet-A 3.4811 eV 356.17 nm f=0.7446 <S**2>=0.000 83 -> 87 0.10930 86 -> 87 0.68809 Excited State 9: 6.5253 eV 190.00 nm f=0.2405 <S**2>=0.000 Singlet-A 82 -> 900.18805 83 -> 92-0.1021586 -> 92 0.65425 Excited State 11: Singlet-A 6.8606 eV 180.72 nm f=0.6259 <S**2>=0.000 79 -> 87 -0.12537 83 -> 87 0.10384 83 -> 89 0.17699 84 -> 88 -0.15992 85 -> 88 0.62247 ε=7 Excited State 1: Singlet-A 3.5083 eV 353.40 nm f=0.7466 <S**2>=0.000 83 -> 87 0.10873 86 -> 87 0.68792 Excited State 9: Singlet-A 6.5146 eV 190.32 nm f=0.2437 <S**2>=0.000

82 -> 90 0.18667 83 -> 92 -0.1023486 -> 92 0.65496 Excited State 11: 6.8631 eV 180.65 nm f=0.6322 <S**2>=0.000 Singlet-A 79 -> 87 -0.12751 83 -> 87 0.10882 83 -> 89 0.17375 84 -> 88 -0.19517 85 -> 88 0.61221 $\epsilon = 8$ Excited State 1: Singlet-A 3.5292 eV 351.31 nm f=0.7482 <S**2>=0.000 83 -> 87 0.10826 86 -> 87 0.68780 Excited State 9: Singlet-A 6.5064 eV 190.56 nm f=0.2462 <S**2>=0.000 82 -> 900.18556 83 -> 92 -0.10249 86 -> 92 0.65543 Excited State 10: Singlet-A 6.8650 eV 180.60 nm f=0.6371 <S**2>=0.000 79 -> 87 -0.12912 83 -> 87 0.11281 83 -> 89 0.17121 84 -> 88 -0.23004 85 -> 88 0.59981 ε = 9 Excited State 1: Singlet-A 3.5457 eV 349.67 nm f=0.7495 <S**2>=0.000 83 -> 87 0.10786 86 -> 87 0.68771 Excited State 9: 6.4999 eV 190.75 nm f=0.2482 <S**2>=0.000 Singlet-A 82 -> 900.18467 83 -> 92-0.1026086 -> 92 0.65576 Excited State 10: Singlet-A 6.8666 eV 180.56 nm f=0.6409 <S**2>=0.000 79 -> 87 -0.13039 83 -> 87 0.11607 83 -> 89 0.16916 84 -> 88 -0.26332 85 -> 88 0.58574 $\epsilon = 10$ 3.5592 eV 348.35 nm f=0.7505 <S**2>=0.000 Excited State 1: Singlet-A 83 -> 87 0.10752 86 -> 87 0.68763 Excited State 9: 6.4947 eV 190.90 nm f=0.2498 <S**2>=0.000 Singlet-A 82 -> 90 0.18393 83 -> 92 -0.1026886 -> 92 0.65599 Singlet-A 6.8679 eV 180.53 nm f=0.6439 <S**2>=0.000 Excited State 10: 79 -> 87-0.13142 83 -> 87 0.11879 83 -> 89 0.16747 84 -> 88 -0.29409 85 -> 88 0.57069 $\varepsilon = 20$ Excited State 1: Singlet-A 3.6217 eV 342.34 nm f=0.7556 <S**2>=0.000 0.10575 83 -> 87 86 -> 87 0.68733 Excited State 9: 6.4707 eV 191.61 nm f=0.2576 <S**2>=0.000 Singlet-A

82 -> 90 83 -> 91 86 -> 91 Excited State 79 -> 87 83 -> 87 83 -> 89 84 -> 88 85 -> 88	0.18023 -0.10294 0.65510 10: Singlet-A 0.13621 -0.13235 -0.15924 0.45456 -0.45124	6.8741 eV 180.36 nm f=0.6580 <s**2>=0.000</s**2>
$\varepsilon = 30$		
Excited State	1: Singlet-A	3.6433 eV 340.31 nm f=0.7573 <s**2>=0.000</s**2>
83 -> 87	0.10506	
86 -> 87	0.68724	
Excited State	9: Singlet-A	6.4625 eV 191.85 nm f=0.2605 <s**2>=0.000</s**2>
82 -> 90	0.17880	
83 -> 91	-0.10332	
86 -> 91	0.65726	
Excited State $70 > 97$	10: Singlet-A	$6.8/63 \text{ eV}$ 180.31 nm f= $0.6625 < S^{**}2 \ge 0.000$
/9 -> 8/	-0.13/81	
83 -> 8/ 82 -> 80	0.15742	
83 -> 89	0.13024	
85 -> 88	0.40183	
05 - 00	0.40105	
$\varepsilon = 40$		
Excited State	1: Singlet-A	3.6543 eV 339.28 nm f=0.7583 <s**2>=0.000</s**2>
83 -> 87	0.10470	
86 -> 87	0.68720	
Excited State	9: Singlet-A	6.4584 eV 191.97 nm f=0.2619 <s**2>=0.000</s**2>
82 -> 90	0.17800	
83 -> 91	-0.10341	
86 -> 91	0.65750	
Excited State	10: Singlet-A	6.8775 eV 180.28 nm f=0.6647 <s**2>=0.000</s**2>
79 -> 87	-0.13857	
83 -> 87	0.14007	
83 -> 89	0.15468	
84 -> 88	0.31311	
85 -> 88	0.3/8/0	

$\mathbf{\varepsilon} = 0$		
Excited State 84 -> 87 86 -> 87	1: Singlet-A -0.16142 0.68587	1.0910 eV 1136.45 nm f=0.0006 <s**2>=0.000</s**2>
Excited State 84 -> 87 86 -> 87 86 -> 88	4: Singlet-A -0.42807 -0.11478 0.52511	4.0500 eV 306.13 nm f=0.4911 <s**2>=0.000</s**2>
Excited State 76 -> 87 84 -> 87 86 -> 87 86 -> 88	5: Singlet-A 0.12165 0.49539 0.12603 0.45688	4.0581 eV 305.52 nm f=0.3173 <s**2>=0.000</s**2>
ε =2 Excited State 84 -> 87 86 -> 87	1: Singlet-A -0.17360 0.68281	1.7368 eV 713.86 nm f=0.0005 <s**2>=0.000</s**2>
Excited State 86 -> 88 86 -> 88	3: Singlet-A 0.69545 0.69545	4.0997 eV 302.43 nm f=0.8796 <s**2>=0.000</s**2>
Excited State 82 -> 91 84 -> 89 86 -> 97	13: Singlet-A 0.19563 -0.12262 0.62794	6.6149 eV 187.43 nm f=0.1891 <s**2>=0.000</s**2>
ε = 2.8 Excited State 84 -> 87 86 -> 87	1: Singlet-A -0.17835 0.68149	1.9689 eV 629.71 nm f=0.0005 <s**2>=0.000</s**2>
Excited State	3: Singlet-A	4.1597 eV 298.06 nm f=0.8698 <s**2>=0.000</s**2>
80 -> 88 Excited State 82 -> 91 84 -> 89 86 -> 96	0.09491 12: Singlet-A 0.18914 -0.12828 0.63043	6.5746 eV 188.58 nm f=0.2151 <s**2>=0.000</s**2>
ε = 3 Excited State 84 -> 87 86 -> 87	1: Singlet-A -0.17916 0.68124	2.0103 eV 616.76 nm f=0.0005 <s**2>=0.000</s**2>
Excited State $86 \rightarrow 88$	3: Singlet-A	4.1705 eV 297.29 nm f=0.8678 <s**2>=0.000</s**2>
Excited State 82 -> 91 84 -> 89 85 -> 88 86 -> 95 86 -> 96	12: Singlet-A 0.18573 -0.13013 -0.10302 0.11884 0.62448	6.5675 eV 188.79 nm f=0.2189 <s**2>=0.000</s**2>
$\epsilon = 4$ Excited State $84 \rightarrow 87$ $86 \rightarrow 87$	1: Singlet-A -0.18047 0.68031	2.1619 eV 573.50 nm f=0.0004 <s**2>=0.000</s**2>
Excited State 86 -> 88	3: Singlet-A 0.68719	4.2106 eV 294.46 nm f=0.8499 <s**2>=0.000</s**2>
Excited State 82 -> 90	12: Singlet-A -0.10334	6.5421 eV 189.52 nm f=0.2320 <s**2>=0.000</s**2>

Excited state optimised molecular structure

82 -> 91	-0.15750	
84 -> 89	0.13687	
85 -> 88	0.12920	
86 -> 95	0.61332	
86 -> 96	0.13990	
$\epsilon = 5$		
Excited State	1: Singlet-A	2.2585 eV 548.98 nm f=0.0004 <s**2>=0.000</s**2>
83 -> 87	-0.13136	
84 -> 87	-0.13018	
86 -> 87	0.67969	
Excited State	4: Singlet-A	4.2379 eV 292.56 nm f=0.8003 <s**2>=0.000</s**2>
83 -> 87	-0.13869	
84 -> 87	0.12223	
86 -> 88	0.66429	
Excited State	13: Singlet-A	6.7259 eV 184.34 nm f=0.2314 <s**2>=0.000</s**2>
77 -> 87	0.16292	
78 -> 87	-0.17937	
83 -> 88	-0.26286	
84 -> 88	-0.26340	
85 -> 89	0.50751	
$\varepsilon = 6$		
Excited State	1: Singlet-A	2.3254 eV 533.16 nm f=0.0004 <s**2>=0.000</s**2>
83 -> 87	-0.18080	
86 -> 87	0.67925	
Excited State	4: Singlet-A	4.2554 eV 291.36 nm f= $0.8502 < S^{**2} = 0.000$
86 -> 88	0.69196	
Excited State	13: Singlet-A	6.7309 eV 184.20 nm f=0.2406 <s**2>=0.000</s**2>
/8 -> 8/	0.18000	
83 -> 80	-0.30242	
85 -> 89	0.51657	
$\varepsilon = 7$		
Excited State	1: Singlet-A	2.3747 eV 522.11 nm f=0.0004 <s**2>=0.000</s**2>
83 -> 87	-0.18528	
86 -> 8/	0.6/892	4 2 (9 7 . V. 200 45 . C. 0 952 (-C**2> 0 000
86 -> 88	4: Singlet-A 0.69391	4.2687 eV 290.45 nm f=0.8526 <s**2>=0.000</s**2>
Excited State	11: Singlet-A	6.5074 eV 190.53 nm f=0.2488 <s**2>=0.000</s**2>
82 -> 90	0.16190	
83 -> 89	-0.15009	
85 -> 88	-0.16957	
86 -> 93	0.61518	
$\epsilon = 8$		
Excited State	1: Singlet-A	2.4124 eV 513.95 nm f=0.0004 <s**2>=0.000</s**2>
83 -> 87	-0.18699	
86 -> 87	0.67867	
Excited State 86 -> 88	4: Singlet-A 0.69444	4.2789 eV 289.76 nm f=0.8525 <s**2>=0.000</s**2>
Excited State	11: Singlet-A	6.5023 eV 190.68 nm f=0.2533 <s**2>=0.000</s**2>
82 -> 90	-0.16110	
83 -> 89	0.15413	
85 -> 88	0.17692	
86 -> 92	0.61461	
e = 9		

 $\epsilon = 9$ Excited State 1: Singlet-A 2.4422 eV 507.67 nm f=0.0004 <S**2>=0.000

83 -> 87 86 -> 87 Excited State 86 -> 88 Excited State 82 -> 90 83 -> 89 85 -> 88 86 -> 92	-0.18803 0.67846 4: Singlet-A 0.69466 11: Singlet-A -0.15793 0.15689 0.18219 0.61307	4.2870 eV 289.21 nm f=0.8521 <s**2>=0.000 6.4982 eV 190.80 nm f=0.2561 <s**2>=0.000</s**2></s**2>
$\varepsilon = 10$ Excited State 83 -> 87 86 -> 87	1: Singlet-A -0.18877 0.67830	2.4664 eV 502.69 nm f=0.0004 <s**2>=0.000</s**2>
Excited State $86 \rightarrow 88$	4: Singlet-A 0 69478	4.2936 eV 288.76 nm f=0.8515 <s**2>=0.000</s**2>
Excited State 82 -> 90 83 -> 89 85 -> 88 86 -> 92	11: Singlet-A -0.15341 0.15902 0.18608 0.61133	6.4950 eV 190.89 nm f=0.2583 <s**2>=0.000</s**2>
ε = 12		
Excited State 83 -> 87 86 -> 87	1: Singlet-A -0.18980 0.67804	2.5033 eV 495.29 nm f=0.0004 <s**2>=0.000</s**2>
Excited State	4: Singlet-A	4.3037 eV 288.09 nm f=0.8506 <s**2>=0.000</s**2>
Excited State 82 -> 90 83 -> 89 85 -> 88 86 -> 92	0.09488 11: Singlet-A -0.14189 0.16217 0.19110 0.60825	6.4901 eV 191.04 nm f=0.2614 <s**2>=0.000</s**2>
ε = 14		
Excited State 83 -> 87 86 -> 87	1: Singlet-A -0.19050 0.67786	2.5300 eV 490.05 nm f=0.0004 <s**2>=0.000</s**2>
Excited State	4: Singlet-A 0 69492	4.3110 eV 287.60 nm f=0.8499 <s**2>=0.000</s**2>
Excited State 81 -> 90 82 -> 90 83 -> 89 85 -> 88 86 -> 92	11: Singlet-A 0.10901 -0.12928 0.16442 0.19387 0.60576	6.4867 eV 191.14 nm f=0.2636 <s**2>=0.000</s**2>
ε = 16		
Excited State 83 -> 87 86 -> 87	1: Singlet-A -0.19102 0.67772	2.5503 eV 486.15 nm f=0.0004 <s**2>=0.000</s**2>
Excited State $86 \rightarrow 88$	4: Singlet-A 0.69494	4.3165 eV 287.23 nm f=0.8493 <s**2>=0.000</s**2>
Excited State 81 -> 90 82 -> 90 83 -> 89 85 -> 88 86 -> 92	11: Singlet-A -0.12055 -0.11757 0.16612 0.19537 0.60374	6.4842 eV 191.21 nm f=0.2651 <s**2>=0.000</s**2>

$\varepsilon = 18$	
Excited State 1: Singlet-A 83 -> 87 -0.19142 86 -> 87 0.67761	2.5663 eV 483.13 nm f=0.0004 <s**2>=0.000</s**2>
Excited State 4: Singlet-A 86 -> 88 0.69495	4.3209 eV 286.94 nm f=0.8489 <s**2>=0.000</s**2>
Excited State 11: Singlet-A 81 -> 90 -0.12864 82 -> 90 -0.10764 83 -> 89 0.16744 84 -> 88 0.10581 85 -> 88 0.19612 86 -> 92 0.60209	6.4822 eV 191.27 nm f=0.2663 <s**2>=0.000</s**2>
ε =20	
Excited State 1: Singlet-A 83 -> 87 -0.19174 86 -> 87 0.67752	2.5791 eV 480.72 nm f=0.0004 <s**2>=0.000</s**2>
Excited State 4: Singlet-A 86 -> 88 0.69496	4.3244 eV 286.71 nm f=0.8485 <s**2>=0.000</s**2>
Excited State 11: Singlet-A 81 -> 90 -0.13428 83 -> 89 0.16850 84 -> 88 0.11222 85 -> 88 0.19644 86 -> 92 0.60071	6.4807 eV 191.31 nm f=0.2673 <s**2>=0.000</s**2>
$\varepsilon = 30$	
Excited State 1: Singlet-A 83 -> 87 -0.19268 86 -> 87 0 67724	2.6182 eV 473.55 nm f=0.0004 <s**2>=0.000</s**2>
Excited State 4: Singlet-A 86 -> 88 0.69496	4.3351 eV 286.00 nm f=0.8474 <s**2>=0.000</s**2>
Excited State 11: Singlet-A 81 -> 90 -0.14617 83 -> 89 0.17171 84 -> 88 0.13305 85 -> 88 0.19572 86 -> 92 0.59627	6.4761 eV 191.45 nm f=0.2701 <s**2>=0.000</s**2>
$\varepsilon = 40$	
Excited State 1: Singlet-A 83 -> 87 -0.19315 86 -> 87 0.67710	2.6380 eV 469.99 nm f=0.0004 <s**2>=0.000</s**2>
Excited State 4: Singlet-A 86 -> 88 0.69496	4.3405 eV 285.64 nm f=0.8468 <s**2>=0.000</s**2>
Excited State 11: Singlet-A 81 -> 90 -0.14959 83 -> 89 0.17332 84 -> 88 -0.14417 85 -> 88 0.19439 86 -> 92 0.59388	6.4738 eV 191.52 nm f=0.2715 <s**2>=0.000</s**2>

	Excitation 1		Excitation 2		Excitation 3	
ε	λ _{max} (nm)	f	λ _{max} (nm)	f	λ _{max} (nm)	f
0	421.11	0.62	264.69	0.23	213.18	0.24
1.6	403.84	0.72	217.57	0.29	181.62	0.52
1.8	397.31	0.72	257.49	0.19	218.25	0.28
2	391.1	0.72	218.81	0.28	186.33	0.20
3	374.4	0.73	187.9	0.22	181.11	0.58
4	365.63	0.73	221.29	0.25	180.93	0.60
5	359.99	0.74	189.5	0.23	180.81	0.61
6	356.17	0.74	190.00	0.24	180.72	0.62
7	353.4	0.74	190.32	0.24	180.65	0.63
8	351.31	0.74	190.56	0.24	180.60	0.63
9	349.67	0.74	190.75	0.24	180.56	0.64
10	348.35	0.75	190.90	0.24	180.53	0.64
20	342.34	0.75	191.61	0.25	180.36	0.65
30	340.31	0.75	191.85	0.26	180.31	0.66
40	339.3	0.75	191.97	0.26	180.28	0.66

Table S5. Excited states computed for the ground state geometry (from crystal structure) of BMPDQ under different dielectric constants (ϵ); the wavelength (λ_{max}) and the corresponding oscillator strength (f) for the excitations with high oscillator strength are shown.

Table S6. Excited states computed for the optimized excited state geometry of BMPDQ under different dielectric constants (ϵ); the wavelength (λ_{max}) and the corresponding oscillator strength (f) for the excitations with high oscillator strength are shown.

	Excitation 1		Excitation 2		Excitation 3	
ε	λ _{max} (nm)	f	λ _{max} (nm)	f	λ _{max} (nm)	f
0	1136.45	0.0006	306.18	0.49	305.52	0.31
2	713.86	0.0005	302.43	0.87	187.43	0.18
2.8	629.71	0.0005	298.06	0.86	188.58	0.21
3	616.76	0.0005	297.29	0.86	188.79	0.21
4	573.50	0.0004	294.46	0.84	189.52	0.23
5	548.98	0.0004	292.56	0.80	184.34	0.23
6	533.16	0.0004	291.36	0.85	184.20	0.24
7	522.11	0.0004	290.45	0.85	190.53	0.24
8	513.95	0.0004	289.76	0.85	190.68	0.25
9	507.67	0.0004	289.21	0.85	190.80	0.25
10	502.69	0.0004	288.76	0.85	190.89	0.25
12	495.29	0.0004	288.09	0.85	191.04	0.26
14	490.05	0.0004	287.60	0.84	191.14	0.26
16	486.15	0.0004	287.23	0.84	191.21	0.26
18	483.13	0.0004	286.94	0.84	191.27	0.26
20	480.72	0.0004	286.71	0.84	191.31	0.26
30	473.55	0.0004	286.00	0.84	191.45	0.27
40	469.99	0.0004	285.64	0.84	191.52	0.27

Capacitance Measurements

Figure S9. Construction of a parallel plate capacitor using FTO coated plates and BMPDQ microcrystalline powder sandwiched between the plates.

Table S7. Equivalent circuits used to simulate the impedance spectrum (at 1 V) of pristine and acetic acid exposed BMPDQ; the dielectric constant estimated* are also shown.

Time of exposure (min)	Equivalent circuit	3
0	•C C = 41.1 pF	12.9
2	•C C = 30.5 pF	9.6
4	•C C = 28.9 pF	9.1
6	•C c = 27.7 pF	8.7
8	•C c = 24.6 pF	7.7
10	•C c = 22.6 pF	7.1

*Dielectric constant, $\epsilon = \frac{Cd}{\epsilon_0 A}$ where C is the capacitance, d and A are the thickness and area of the sample (400 µm, 1.44 cm² respectively), and ϵ_0 is the permittivity of free space (8.854×10⁻¹² CV⁻¹m⁻¹).

Scanning Kelvin Probe Microscopy

Figure S10. SKPM topography and surface potential images of BMPDQ (a) before and (b) after exposure to acetic acid vapor for 15 min. Plots of the surface potential measured on the substrate and BMPDQ before and after exposure to acetic acid vapors corresponding to several points probed on 6 samples are shown in Figure 9 in the main text.

