Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Facile In-situ Synthesis of Double Perovskite Cs₂AgBiBr₆/WS₂ Heterostructure and Interfacial Charge Transfer Mediated High-Performance Ultraviolet Photodetection

Ravinder Chahal¹, Abdul Kaim Mia², Abhilasha Bora², and P. K. Giri^{1*}

¹Department of Physics, Indian Institute of Technology Guwahati, Guwahati, Assam 781039

²Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam

781039

Figure S1. (a) FETEM image of multi-layer WS₂ nanosheets prepared by ultrasonication method. **(b)** The corresponding selected area electron diffraction pattern of WS₂ nanosheets.

Figure S2. (a) FETEM image of the $Cs_2AgBiBr_6/WS_2$ heterostructure. **(b-g)** Elemental mapping of Cs, Ag, Bi, Br, W, and S elements in $Cs_2AgBiBr_6/WS_2$ heterostructure, respectively. The scale bar in each image is 100 nm.

Figure S3: The corresponding TEM-EDX spectra of DP/WS₂ heterostructure.

Figure S4. Comparison of the Raman spectra of WS_2 (red) and $Cs_2AgBiBr_6/WS_2$ (blue) heterostructure.

Figure S5. (a) XPS survey scan spectra of $Cs_2AgBiBr_6 DP$ (black) and $Cs_2AgBiBr_6/WS_2$ heterostructure (red). **(b)** Comparison of high-resolution XPS spectra of tungsten (W) in WS₂ nanosheets and $Cs_2AgBiBr_6/WS_2$ heterostructure.

Figure S6. (a) Tauc plot of $Cs_2AgBiBr_6$ DP (black) and $Cs_2AgBiBr_6/WS_2$ heterostructure (red). The green dotted line displays the linear fitting of the graphs. **(b)** Tauc plot of the few-layer WS_2 nanosheets (black). The red line is the linear fitting of the graph.

Figure S7. Time-resolved PL spectra of $Cs_2AgBiBr_6$ DP (magenta) and $Cs_2AgBiBr_6/WS_2$ heterostructure (orange). The solid blue line represents exponential fitting.

Table S1: TRPL decay parameters of Cs₂AgBiBr₆ DP and Cs₂AgBiBr₆/WS₂ HS.

Sample	A ₁	τ ₁ (ns)	A ₂	τ ₂ (ns)	τ _{avg} (ns)
Cs ₂ AgBibr ₆ DP	2.4	0.16	7.3	3.7	3.65
Cs ₂ AgBiBr ₆ DP/WS ₂ (HS)	3.5	0.14	2.8	0.95	0.82

Figure S8. UPS spectra of (a) Cs₂AgBiBr₆ DP, and (b) WS₂ nanosheets. The inset in each case shows the magnified view of the plot in the lower binding energy region.

Figure S9. The real-time image of the Cs₂AgBiBr₆/WS₂ heterostructure photodetector.

Figure S11. Dark and photo I-V characteristics of WS_2 nanosheets with different intensity laser illumination.

Figure S12. Wavelength-dependent Responsivity and absorption spectra of DP/WS_2 heterostructure.

Figure S13. (a) Photocurrent response of $Cs_2AgBiBr_6$ DP with different laser power (mW). **(b)** Photocurrent response of $Cs_2AgBiBr_6/WS_2$ heterostructure with varying incident laser powers for 405 nm diode laser.

Figure S14. Photocurrent rise and fall time profiles of Cs₂AgBiBr₆ DP with pulsed laser excitation.